Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 093201    DOI: 10.1088/1674-1056/23/9/093201

Microwave photonic filter with a continuously tunable central frequency using an SOI high-Q microdisk resonator

Liu Li (刘力), Yang Ting (杨婷), Dong Jian-Ji (董建绩)
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Utilizing a high-Q microdisk resonator (MDR) on a single silicon-on-insulator (SOI) chip, a compact microwave photonic filter (MPF) with a continuously tunable central frequency is proposed and experimentally demonstrated. Assisted by the optical single side-band (OSSB) modulation, the optical frequency response of the MDR is mapped to the microwave frequency response to form an MPF with a continuously tunable central frequency and a narrow 3-dB bandwidth. In the experiment, using an MDR with a compact size of 20×20 μ2 and a high Q factor of 1.07×105, we obtain a compact MPF with a high rejection ratio of about 40 dB, a 3-dB bandwidth of about 2 GHz, and a frequency tuning range larger than 12 GHz. Our approach may allow the implementation of very compact, low-cost, low-consumption, and integrated notch MPF in a silicon chip.
Keywords:  microwave photonic filter (MPF)      microdisk resonator (MDR)      silicon-on-insulator (SOI) chip      optical single side-band (OSSB) modulation  
Received:  04 November 2013      Revised:  15 March 2014      Accepted manuscript online: 
PACS:  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  42.79.Ci (Filters, zone plates, and polarizers)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB301704), the Program for New Century Excellent Talents in Ministry of Education of China (Grant No. NCET-11-0168), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201139), and the National Natural Science Foundation of China (Grant Nos. 60901006 and 11174096).
Corresponding Authors:  Dong Jian-Ji     E-mail:

Cite this article: 

Liu Li (刘力), Yang Ting (杨婷), Dong Jian-Ji (董建绩) Microwave photonic filter with a continuously tunable central frequency using an SOI high-Q microdisk resonator 2014 Chin. Phys. B 23 093201

[1] Yao J P 2009 IEEE J. Lightw. Technol. 27 314
[2] Vidal B, Polo V, Corral J L and Marti J 2003 Elect. Lett. 39 547
[3] Vidal B, Piqueras M A and Martí J 2007 Opt. Lett. 32 23
[4] Yu Y, Dong J J, Xu E M, X. Li, Zhou L N, Wang F and Zhang X L 2011 IEEE J. Lightw. Technol. 29 3542
[5] Zhang Y, Zhang X L, Chen G J, Xu E M and Huang D X 2010 Chin. Phys. Lett. 27 074207
[6] Xu E M, Zhang X L, Zhou L N, Zhang Y and Huang D X 2009 Chin. Phys. Lett. 26 094208
[7] Rasras M S, Kun-Yii T, Gill D M, Chen Y K, White A E, Patel S S, Pomerene A, Carothers D, Beattie J, Beals M, Michel J and Kimerling L C 2009 IEEE J. Lightw. Technol. 27 2105
[8] Chen J X, Wu Y, Hodiak J and Yu P K L 2003 IEEE Photon. Technol. Lett. 15 284
[9] Chan E H W, Alameh K E and Minasian R A 2002 IEEE J. Lightw. Technol. 20 1962
[10] Dong J J, Liu L, Gao G S, Yu Y, Zheng A L, Yang T and Zhang X L 2013 IEEE Photon. J. 5 5500307
[11] Chan E H W and Minasian R A 2004 Elect. Lett. 40 1375
[12] Zhang W, Williams J A R and Bennion I 1999 Elect. Lett. 35 2133
[13] Zhu Y, Xu X J, Li Z Y, Zhou L, Han W H, Fan Z C, Yu Y D and Yu J Z 2010 Chin. Phys. B 19 014219
[14] Alipour P, Eftekhar A A, Atabaki A H, Li Q, Yegnanarayanan S, Madsen C K and Adibi A 2011 Opt. Express 19 15899
[15] Chen L, Sherwood-Droz N and Lipson M 2007 Opt. Lett. 32 3361
[16] Zhang D, Xue F and Huang Y 2012 IEEE Photon. Technol. Lett. 24 1502
[17] Abreu-Afonso J, Diez A, Cruz J L and Andres M V 2012 IEEE Photon. Technol. Lett. 24 2129
[18] Lee M C M and Wu M C 2006 Opt. Lett. 31 2444
[19] Soltani M, Yegnanarayanan S and Adibi A 2007 Opt. Express 15 4694
[1] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[2] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[3] Preparation of a two-state mixture of ultracold fermionic atoms with balanced population subject to the unstable magnetic field
Donghao Li(李东豪), Lianghui Huang(黄良辉), Guoqi Bian(边国旗), Jie Miao(苗杰), Liangchao Chen(陈良超), Zengming Meng(孟增明), Wei Han(韩伟), and Pengjun Wang(王鹏军). Chin. Phys. B, 2021, 30(9): 090303.
[4] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[5] Rubidium-beam microwave clock pumped by distributed feedback diode lasers
Chang Liu(刘畅), Sheng Zhou(周晟), Yan-Hui Wang(王延辉), Shi-Min Hou(侯士敏). Chin. Phys. B, 2017, 26(11): 113201.
[6] Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民). Chin. Phys. B, 2017, 26(11): 113202.
[7] Automatic compensation of magnetic field for a rubidium space cold atom clock
Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(7): 073201.
[8] Microwave interrogation cavity for the rubidium space cold atom clock
Wei Ren(任伟), Yuan-Ci Gao(高源慈), Tang Li(李唐), De-Sheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(6): 060601.
[9] On-chip optical pulse shaper for arbitrary waveform generation
Liao Sha-Sha (廖莎莎), Yang Ting (杨婷), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(7): 073201.
[10] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
[11] Diversity of photonic differentiators based on flexible demodulation of phase signals
Zheng Ao-Ling (郑傲凌), Dong Jian-Ji (董建绩), Lei Lei (雷蕾), Yang Ting (杨婷), Zhang Xin-Liang (张新亮). Chin. Phys. B, 2014, 23(3): 033201.
[12] Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror
Luo Bo-Wen (罗博文), Dong Jian-Ji (董建绩), Yu Yuan (于源), Yang Ting (杨婷), Zhang Xin-Liang (张新亮 ). Chin. Phys. B, 2013, 22(2): 023201.
[13] Study of frequency-modulated excitation of Rydberg potassium atoms by using B-spline
Li Xiao-Yong (李小勇), Wang Guo-Li (王国利), Zhou Xiao-Xin (周效信). Chin. Phys. B, 2012, 21(9): 094205.
[14] Photonic generation of power-efficient FCC-compliant ultra-wideband waveforms using semiconductor optical amplifier (SOA): theoretical analysis and experiment verification
Dong Jian-Ji(董建绩), Luo Bo-Wen(罗博文), Huang De-Xiu(黄德修), and Zhang Xin-Liang(张新亮) . Chin. Phys. B, 2012, 21(4): 043201.
[15] Miniaturized optical system for atomic fountain clock
Lü De-Sheng (吕德胜), Qu Qiu-Zhi (屈求智), Wang Bin (汪斌), Zhao Jian-Bo (赵剑波), Li Tang (李唐), Liu Liang (刘亮), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2011, 20(6): 063201.
No Suggested Reading articles found!