Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 036102    DOI: 10.1088/1674-1056/25/3/036102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations

Jin-Ping Zhang(张金平)1, Yang-Yang Zhang(张洋洋)1, Er-Ping Wang(王二萍)1, Cui-Ming Tang (唐翠明)2, Xin-Lu Cheng(程新路)2, Qiu-Hui Zhang(张秋慧)3
1. College of Information Engineering, Huanghe Science and Technology College, Zhengzhou 450006, China;
2. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
3. Department of Electrical Information Engineering, Henan Institute of Engineering, Zhengzhou 451191, China
Abstract  The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function (RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al-Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al-Ti atoms for the low cooling rate.
Keywords:  molecular dynamics      melting      radial distribution function      structure evolution  
Received:  22 April 2015      Revised:  31 October 2015      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  52.65.Yy (Molecular dynamics methods)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21401064), the Science & Technology Development Program of Henan Province, China (Grant No. 142300410282), and the Program of Henan Educational Committee, China (Grant No. 13B140986).
Corresponding Authors:  Jin-Ping Zhang     E-mail:  jinping213@163.com

Cite this article: 

Jin-Ping Zhang(张金平), Yang-Yang Zhang(张洋洋), Er-Ping Wang(王二萍), Cui-Ming Tang (唐翠明), Xin-Lu Cheng(程新路), Qiu-Hui Zhang(张秋慧) Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations 2016 Chin. Phys. B 25 036102

[1] Djanarthany S, Viala J C and Bouix J 2001 Mater. Chem. Phys. 72 301
[2] Niu H Z, Kong F T, Chen Y Y and Yang F 2011 J. Alloy. Comp. 509 10179
[3] Forouzanmehr N, Karimzadeh F and Enayati M H 2009 J. Alloy. Comp. 471 93
[4] Vaucher S, Stir M, Ishizaki K, Catala-Civera J M and Nicula R 2011 Thermochim. Acta 522 151
[5] Sun Y, Vajpai S K, Ameyama K and Ma C 2014 J. Alloy. Comp. 585 734
[6] Liu T, Zhang T W, Zhu M and Qin C G 2012 J. Nanopart. Res. 14 738
[7] Sienkiewicz J, Kuroda S, Molak R M, Murakami H, Araki H, Takamori S and Kurzydlowski K J 2014 Intermetallics 49 57
[8] Nogorani F S, Ashrafizadeh F and Saatchi A 2012 Surf. Coat. Tech. 210 97
[9] Garbacz H, Pouquet J M, García-Lecina E, Díaz-Fuentes M, Wieciński P, Martin R H, Wierzchoń T and Kurzydlowski K J 2011 Surf. Coat. Tech. 205 4433
[10] Ryu J R, Moon K II and Lee K S 2000 J. Alloy. Comp. 296 157
[11] Patselov A, Greenberg B, Gladkovskii S, Lavrikov R and Borodin E 2012 AASRI Procedia 3 107
[12] Li X W, Sun H F, Fang W B and Ding Y F 2011 Trans. Nonferrous Met. Soc. China 21 s338
[13] Zhou K, Wang H P and Wei B 2012 Chem. Phys. Lett. 521 52
[14] Pei Q X, Lu C and Fu M W 2004 J. Phys.: Condens. Matter 16 4203
[15] Xie Z C, Gao T H, Guo X T, Qin X M and Xie Q 2014 J. Non-Cryst. Solid. 394 16
[16] Kiselev S P and Zhirov E V 2014 Intermetallics 49 106
[17] Koizumi Y, Yoshiya M, Sugihara A and Minamino Y 2011 Philos. Mag. 91 3685
[18] Tan X Q, Chen J, Zhi W and Brown J 2010 Physica B 405 3543
[19] Levchenko E V, Evteev A V, Löwisch G G, Belova I V and Murch G E 2012 Intermetallics 22 193
[20] Levchenko E V, Evteev A V, Lorscheider T, Belova I V and Murch G E 2013 Comp. Mater. Sci. 79 316
[21] Moon K II and Lee K S 1999 J. Alloy. Compd. 291 312
[22] Bhattacharya P, Bellon P, Averback R S and Hales S J 2004 J. Alloy. Compd. 368 187
[23] Shu S L, Qiu F, Tong C Z, Shan X N and Jiang Q C 2014 J. Alloy. Copmd. 617 302
[24] Song P and Wen D 2010 J. Phys. Chem. C 114 8688
[25] Wen Y H, Huang R, Li C, Zhu Z Z and Sun S G 2012 J. Mater. Chem. 22 7380
[26] Cheng D and Hou M 2010 Eur. Phys. J. B 74 379
[27] Huang R, Wen Y H, Shao G F, Zhu Z Z and Sun S G 2013 J. Phys. Chem. C 117 6896
[28] Huang R, Wen Y H, Shao G F and Sun S G 2013 J. Phys. Chem. C 117 4278
[29] Cheng X L, Zhang J P, Zhang H and Zhao F 2013 J. Appl. Phys. 114 084310
[30] Plimpton S 1995 J. Comput. Phys. 117 1
[31] Zope R R and Mishin Y 2003 Phys. Rev. B 68 024102
[32] Pezold J von, Dick A, Friák M and Neugebauer J 2010 Phys. Rev. B 81 094203
[33] Qi Y, Cagin T, Johnson W L and Goddard W A 2001 J. Chem. Phys. 115 385
[34] Cao B, Starace A K, Judd O H and Jarrold M F 2009 J. Am. Chem. Soc. 131 2446
[35] Kambara M, Uenishi K and Kobayashi K F 2000 J. Mater. Sci. 35 2897
[36] Li G J, Wang Q, Cao Y Z, Lü X, Li D G and He J C 2011 Acta Phys. Sin. 60 093601 (in Chinese)
[37] Wendt H R and Abraham F F 1978 Phys. Rev. Lett. 41 1244
[38] Nam H S, Hwang N M, Yu B D and Yoom J K 2002 Phys. Rev. Lett. 89 275502
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!