Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 034208    DOI: 10.1088/1674-1056/25/3/034208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis of the electromagnetic field inside an anomalous-dispersion microresonator under synthetical pump

Xin Xu(徐昕)1,2, Xiaohong Hu(胡晓鸿)1,2, Ye Feng(冯野)1,2, Yuanshan Liu(刘元山)1, Wei Zhang(张伟)1, Zhi Yang(杨直)1, Wei Zhao(赵卫)1, Yishan Wang(王屹山)1
1. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We study the spatiotemporal evolution of the electromagnetic field inside a microresonator showing an anomalous dispersion at the pump wavelength by using the normalized Lugiato-Lefever equation. Unlike the traditional single continuous wave (CW) pumping, an additional pump source consisting of periodical pulse train with variable repetition rate is adopted. The influences of the microresonator properties and the pump parameters on the field evolution and the electromagnetic field profile are analyzed. The simulation results indicate that, in the anomalous dispersion regime, both increases of the input pulse amplitude and the repetition frequency can result in the field profiles consisting of multiple peaks. A series of equidistant pulses can also be obtained by increasing the CW pump power. In addition, we find that a large physical detuning between the pump laser carrier and the cavity resonance frequency also causes the splitting of the inside field.
Keywords:  microcavity      nonlinear optics      Lugiato-Lefever equation      field evolution  
Received:  10 June 2015      Revised:  20 October 2015      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.81.Wg (Other fiber-optical devices)  
Fund: Project supported by the National Major Scientific Instrumentation Development Program of China (Grant No. 2011YQ120022), CAS/SAFEA International Partnership Program for Creative Research Teams, China, and the National Natural Science Foundation of China (Grant No. 61275164).
Corresponding Authors:  Yuanshan Liu, Yishan Wang     E-mail:  liuyuanshan@opt.ac.cn;yshwang@opt.ac.cn

Cite this article: 

Xin Xu(徐昕), Xiaohong Hu(胡晓鸿), Ye Feng(冯野), Yuanshan Liu(刘元山), Wei Zhang(张伟), Zhi Yang(杨直), Wei Zhao(赵卫), Yishan Wang(王屹山) Theoretical analysis of the electromagnetic field inside an anomalous-dispersion microresonator under synthetical pump 2016 Chin. Phys. B 25 034208

[1] Yasui T, Yokoyama S, Inaba H, Minoshima K, Nagatsuma T and Araki T 2011 IEEE J. Sel. Topics Quantum Electron 17 191
[2] Coddington I, Swann W C, Nenadovic L and Newbury N R 2009 Nat. Photon. 3 351
[3] Cundiff S T and Weiner A M 2010 Nat. Photon. 4 760
[4] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51
[5] Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S and Jorgensen C G 2004 Opt. Express 12 4999
[6] Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F and Jorgensen C G 2004 Opt. Lett. 29 250
[7] Swann W C, McFerran J J, Coddington, Newbury N R, Hartl I, Fermann M E, Westbrook P S, Nicholson J W, Feder K S and Fejer M M 2006 Opt. Lett. 31 3046
[8] McFerran J J, Nenadović L, Swann W C, Schlager J B and Newbury N R 2007 Opt. Express 15 13155
[9] Byun H, Sander M Y, Motamedi A, Shen H, Petrich G S, Kolodziejski L A, Ippen E P and Kärtner F X 2010 Appl. Opt. 49 5577
[10] Herr T, Hartinger K, Riemensberger J, Wang C Y, Gavartin E, Holzwarth R, Gorodetsky M L and Kippenberg T J 2011 Nat. Photon. 24 1
[11] Kippenberg T J, Spillane S M and Vahala K J 2004 Appl. Phys. Lett. 85 6113
[12] Vahala K J 2003 Nature 424 839
[13] Saha K, Okawachi Y, Shim B, Levy J S, Salem R, Johnson A R, Foster M A, Lamont M R E, Lipson M and Gaeta A L 2013 Opt. Express 21 1335
[14] Del'Haye P, Arcizet O, Schliesser A, Holzwarth R and Kippenberg T J 2008 Phys. Rev. Lett. 101 053903
[15] Kippenberg T J, Holzwarth R and Diddams S A 2011 Science 332 555
[16] Cao S and Xu X L 2014 Physics 43 740
[17] Li C F 2012 Physics 41 635
[18] Steinmetz T, Wilken T, Hauck C A, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, SchmidtW and Udem T 2008 Science 321 1335
[19] Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J and Koos C 2013 Nat. Photon. 8 375
[20] Savchenkov A A, Matsko A B, Strekalov D, Mohageg M, Ilchenko V S and Maleki L 2005 Phys. Rev. Lett. 93 243905
[21] Chembo Y K, Strekalov D V and Yu N 2010 Phys. Rev. Lett. 104 103902
[22] Chembo Y K and Yu N 2010 Phys. Rev. A 82 033801
[23] Lamont M R E, Okawachi Y and Gaeta A L 2013 Opt. Lett. 38 3478
[24] Coen S, Randle H G, Sylvestre T and Erkintalo M 2013 Opt. Lett. 38 37
[25] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2013 Nat. Photon. 8 145
[26] Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
[27] Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little B E and Moss D J 2010 Nat. Photon. 4 41
[28] Matsko A B, Savchenkov A A, Liang W, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2845
[29] Agha I H, Okawachi Y and Gaeta A L 2009 Opt. Express 17 16209
[30] Lugiato L A and Lefever R 1987 Phys. Rev. Lett. 25 2209
[31] Coen S and Erkintalo M 2013 Opt. Lett. 38 1790
[32] Parra-Rivas P, Gomila D, Matias M A, Coen S and Gelens L 2014 Phys. Rev. A 89 043813
[33] Chembo Y K and Menyuk C R 2013 Phys. Rev. A 87 053852
[34] Coen S and Haelterman M 2001 Opt. Lett. 26 39
[35] Hansson T, Modotto D and Wabnitz S 2013 Phys. Rev. A 88 023819
[36] Leo F, Gelens L, Emplit P, Haelterman M and Coen S 2013 Opt. Express 21 9180
[37] Godey C, Balakireva I V, Coillet A and Chembo Y K 2014 Phys. Rev. A 89 063814
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[5] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[6] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[7] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[8] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[9] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[10] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[11] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[12] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[13] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[14] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[15] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
No Suggested Reading articles found!