Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 034207    DOI: 10.1088/1674-1056/25/3/034207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber

Jing-Hui Liu(刘京徽)1, Jin-Rong Tian(田金荣)1, He-Yang Guoyu(郭于鹤洋)1, Run-Qin Xu(徐润亲)1, Ke-Xuan Li(李克轩)1, Yan-Rong Song(宋晏蓉)1, Xin-Ping Zhang(张新平)1, Liang-Bi Su(苏良碧)2, Jun Xu(徐军)2
1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
2. Key Laboratory of Transparent and Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  

We demonstrate a passively Q-switched Yb:LSO laser based on tungsten disulphide (WS2) saturable absorber operating at 1034 nm and 1056 nm simultaneously. The saturable absorbers were fabricated by spin coating method. With low speed, the WS2 nanoplatelets embedded in polyvinyl alcohol could be coated on a BK7 glass substrate coated with high-refractive-index thin polymer. The shortest pulse width of 1.6 μs with a repetition rate of 76.9 kHz is obtained. As the pump power increases to 9 W, the maximum output power is measured to be 250 mW, corresponding to a single pulse energy of 3.25 μJ. To the best of our knowledge, this is the first time to obtain dual-wavelength Q-switched solid-state laser using few-layer WS2 nanoplatelets.

Keywords:  tungsten disulphide      Yb:LSO      Q-switching      dual-wavelength  
Received:  04 November 2015      Revised:  08 December 2015      Accepted manuscript online: 
PACS:  42.60.Gd (Q-switching)  
  42.70.Hj (Laser materials)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Fund: 

Project supported by the National Scientific Research Project of China (Grant No. 61177047), Beijing Municipal Natural Science Foundation, China (Grant No. 1102005), and the Basic Research Foundation of Beijing University of Technology, China (Grant No. X3006111201501).

Corresponding Authors:  Jin-Rong Tian, Yan-Rong Song     E-mail:  jrtian@bjut.edu.cn;yrsong@bjut.edu.cn

Cite this article: 

Jing-Hui Liu(刘京徽), Jin-Rong Tian(田金荣), He-Yang Guoyu(郭于鹤洋), Run-Qin Xu(徐润亲), Ke-Xuan Li(李克轩), Yan-Rong Song(宋晏蓉), Xin-Ping Zhang(张新平), Liang-Bi Su(苏良碧), Jun Xu(徐军) Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber 2016 Chin. Phys. B 25 034207

[1] Notake T, Nawata K, Kawamata H, Mastukawa T, Qi F and Minamide H 2012 Opt. Express 20 25850
[2] Gale G M, Gallot G, Hache F, Lascoux N, Bratos S and Leicknam J C 1999 Phys. Rev. Lett. 82 1068
[3] Barros M R X, Miranda R S, Jedju T M and Becker P C 1995 Opt. Lett. 20 480
[4] Vodopyanov K L, Fejer M M, Yu X, Harris J S, Lee Y S, Hurlbut W C, Kozlov V G, Bliss D and Lynch C 2006 Appl. Phys. Lett. 89 141119
[5] Creeden D, McCarthy J C, Ketteridge P A, Schunemann P G, Southward T, Komiak J J and Chicklis E P 2007 Opt. Express 15 6478
[6] Wang Y G, Wang Y S, Zhang X J and Wen Q 2014 Opt. Commun. 321 172
[7] Serres J M, Loiko P, Mateos X, Yumashey K, Griebner U, Petrov V, Aguiló M and Diaz F 2015 Opt. Express 23 14108
[8] Zhu H T, Cai W, Wei J F, Liu J, Zheng L H, Su L B, Xu J and Wang Y G 2015 Opt. Laser Tech. 68 120
[9] Zhao C J, Zhang H, Qi X, Chen Y, Wang Z, Wen S C and Tang D Y 2012 Appl. Phys. Lett. 101 211106
[10] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[11] Zhao Y, Li X, Xu M, Yu H, Wu Y, Wang Z, Hao X and Xu X 2013 Opt. Express 21 3516
[12] Song Q, Wang G, Zhang B, Wang W, Wang M, Zhang Q, Sun G, Bo Y and Peng Q 2015 Appl. Opt. 54 2688
[13] Feng T, Yang K, Zhao S, Zhao J, Qiao W, Li T, Zheng L, Xu J, Wang Q, Xu X, Su L and Wang Y 2015 IEEE Photon. Tech. Lett. 27 7
[14] Jia F, Chen H, Liu P, Huang Y and Luo Z 2015 IEEE J. Sel. Top. Quantum. Electron. 21 1601806
[15] Lou F, Zhao R, He J, Jia Z, Su X, Wang Z, Hou J and Zhang B 2015 Photon. Res. 3 A25
[16] Marc C, Joshua D C, Francisco J B, Jeremy R, Travis A, Hayden C and Marko T 2011 Appl. Phys. Lett. 99 211909
[17] Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C, Wang B, Crespi V H, López-Urias F, Charlier J, Terrones H and Terrones M 2013 Sci. Rep. 3 1755
[18] Geim A K and Grigorieva I V 2013 Nature 499 419
[19] Mao D, Wang Y D, Ma C J, Han L, Jiang B Q, Gan X T, Hua S J, Zhang W D, Mei T and Zhao J L 2015 Sci. Rep. 5 7965
[20] Yan P G, Liu A J, Chen Y S, Chen H, Ruan S C, Guo C Y, Chen S F, Li I L, Yang H P, Hu J G and Cao G Z 2015 Opt. Mater. Express 5 479
[21] Wu K, Zhang X Y, Wang J, Li X and Chen J P 2015 Opt. Express 23 11453
[22] Zhao G, Han S, Wang A Z, Wu Y Z, Zhao M W, Wang Z P and Hao X P 2015 Adv. Funct. Mater. 25 5292
[23] Kassani S H, Khazaeinezhad R, Jeong H, Nazari T, Yeom D and Oh K 2015 Opt. Mater. Express 5 373
[24] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J, Moriarty C G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D and Nicolosi V 2011 Science 331 568
[25] Pan S D, Cui L, Liu J Q, Teng B, Liu J H and Ge X H 2014 Opt. Mater. 38 42
[26] Fong K H, Kikuchi K, Goh C S, Set S Y, Granger R, Haiml M, Schlatter A and Keller U 2007 Opt. Lett. 32 38
[27] Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H and Fang X H 2014 Opt. Express 22 24055
[28] Yu Z H, Song Y R, Tian J R, Dou Z Y, Guoyu H Y, Li K X, Li H W and Zhang X P 2014 Opt. Express 22 11508
[29] Feng C, Liu J, Wang Y, Zheng L, Su L and Xu J 2013 Laser Phys. 23 065802
[30] Guo K, Song Y R, Tian J R, Hu J R, Zhang Z G, Yan C F, Zhao G J, Su L B and Xu J 2008 Acta Photon. Sin. 37 1289
[31] Tian W L, Wang Z H, Zhu J F, Wei Z Y, Zheng L H, Xu X D and Xu J 2015 Chin. Phys. Lett. 21 024206
[32] Yu H H, Zhang H J, Wang Z P, Wang J Y, Wang Y G, Zhang X Y, Lan R J and Jiang M H 2009 Appl. Phys. Lett. 94 041126
[33] Chu H W, Zhao S Z, Li T, Yang K J, Li G Q, Li D C, Zhao J, Qiao W C, Xu J Q and Hang Y 2015 IEEE J. Sel. Top. Quantum Electron. 21 1600705
[1] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[2] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[3] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[4] Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser
Yu Zheng(郑煜), Jin-Rong Tian(田金荣), Zi-Kai Dong(董自凯), Run-Qin Xu(徐润亲), Ke-Xuan Li(李克轩), Yan-Rong Song(宋晏蓉). Chin. Phys. B, 2017, 26(7): 074212.
[5] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[6] Reflective graphene oxide absorber for passively mode-locked laser operating at nearly 1 μm
Yang Ji-Min (杨济民), Yang Qi (杨琦), Liu Jie (刘杰), Wang Yong-Gang (王勇刚), Yuen H. Tsang. Chin. Phys. B, 2013, 22(9): 094210.
[7] Mid-IR dual-wavelength difference frequency generation in uniform grating PPLN using index dispersion control
Chang Jian-Hua (常建华), Sun Qing (孙青), Ge Yi-Xian (葛益娴), Wang Ting-Ting (王婷婷), Tao Zai-Hong (陶在红), Zhang Chuang (张闯). Chin. Phys. B, 2013, 22(12): 124204.
[8] Dual-wavelength distributed Bragg reflector semiconductor laser based on composite resonant cavity
Chen Cheng (陈琤), Zhao Ling-Juan (赵玲娟), Qiu Ji-Fang (邱吉芳), Liu Yang (刘扬), Wang Wei (王圩), Lou Cai-Yun (娄采云). Chin. Phys. B, 2012, 21(9): 094208.
[9] Comparison of nitride-based dual-wavelength light- emitting diodes with an InAlN electron-blocking layer and with p-type doped barriers
Zhang Yun-Yan(张运炎) and Fan Guang-Han(范广涵) . Chin. Phys. B, 2011, 20(4): 048502.
[10] Dual-wavelength dissipative soliton operation of an erbium-doped fibre laser using a nonlinear polarization rotation technique
Cao Wen-Jun(曹文俊), Xu Wen-Cheng(徐文成), Luo Zhi-Chao(罗智超), Wang Lu-Yan (王璐燕),Wang Hui-Yi(王会义), Dong Jiang-Li (董江莉), and Luo Ai-Ping (罗爱平) . Chin. Phys. B, 2011, 20(11): 114209.
[11] Simultaneous all-solid-state multi-wavelength lasers --- a promising pump source for generating highly coherent terahertz waves
Liu Huan(刘欢), Xu De-Gang(徐德刚), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2009, 18(3): 1077-1084.
[12] An all-solid-state high power quasi-continuous-wave tunable dual-wavelength Ti:sapphire laser system using birefringence filter
Ding Xin(丁欣), Ma Hong-Mei(马洪梅), Zou Lei(邹雷), Zou Yue(邹跃), Wen Wu-Qi(温午麒), Wang Peng(王鹏), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2007, 16(7): 1991-1995.
[13] Switchable and spacing-tunable dual-wavelength erbium-doped fibre lasers
Feng Xin-Huan (冯新焕), Liu Yan-Ge (刘艳格), Sun Lei (孙磊), Yuan Shu-Zhong (袁树忠), Kai Gui-Yun (开桂云), Dong Xiao-Yi (董孝义). Chin. Phys. B, 2005, 14(4): 779-784.
[14] Oscillation conditions of cw simultaneous dual-wavelength Nd:YAG laser for transitions 4F3/2-4I9/2 and 4F3/2-4I11/2
Li Ping-Xue (李平雪), Li De-Hua (李德华), Li Chun-Yong (李春勇), Zhang Zhi-Guo (张治国). Chin. Phys. B, 2004, 13(10): 1689-1693.
[15] Analysis of the laser performance of Tm3+: ZBLAN glass at 1.47μm wavelength
Huang Li-Lei (黄莉蕾), Cao Guo-Xi (曹国熹), Zhang Lun (张伦), Luo Hong-Lei (罗宏雷). Chin. Phys. B, 2004, 13(10): 1728-1732.
No Suggested Reading articles found!