Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 033202    DOI: 10.1088/1674-1056/25/3/033202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer

Peng Zhang(张鹏)1, Zheng-Peng Feng(冯正鹏)1, Si-Qiang Luo(罗四强)1, Zhe Wang(王哲)2
1. Huazhong University of Science and Technology, Wuhan 430074, China;
2. Wuhan Institute of Technology, Wuhan 430073, China
Abstract  

We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion with low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size.

Keywords:  velocity map imaging      interaction size      resolution  
Received:  21 September 2015      Revised:  11 November 2015      Accepted manuscript online: 
PACS:  32.80.-t (Photoionization and excitation)  
  32.80.Fb (Photoionization of atoms and ions)  
  33.60.+q (Photoelectron spectra )  
  07.81.+a (Electron and ion spectrometers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11234004 and 61275126).

Corresponding Authors:  Zhe Wang     E-mail:  972153190@qq.com

Cite this article: 

Peng Zhang(张鹏), Zheng-Peng Feng(冯正鹏), Si-Qiang Luo(罗四强), Zhe Wang(王哲) Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer 2016 Chin. Phys. B 25 033202

[1] Zhang N, Bao W X, Yang J H and Zhu X N 2013 Chin. Phys. B 22 054209
[2] He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B and Lu P X 2015 Phys. Rev. A 91 023428
[3] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X and Sun J Z 2007 Chin. Phys. Lett. 24 1537
[4] Lan P F, Takahashi E J and Midorikawa K 2012 Phys. Rev. A 86 013418
[5] Huang C, Lan P F, Zhou Y M, Zhang Q B, Liu K L and Lu P X 2014 Phys. Rev. A 90 043420
[6] Jia Z M, Zeng Z N, Li R X, Xu Z Z and Deng Y P 2015 Chin. Phys. B 24 013204
[7] Korneev P A, Popruzhenko S V, Goreslavski S P, Yan T M, Bauer D, Becker W, Kübel M, Kling M F, Rodel C, Wü$nsche M and Paulus G G 2012 Phys. Rev. Lett. 108 223601
[8] Zhou Y M, Huang C, Liao Q and Lu P X 2012 Phys. Rev. Lett. 109 053004
[9] Tong A H, Zhou Y M and Lu P X 2015 Opt. Express 23 15774
[10] Posthumus J H 2004 Rep. Prog. Phys. 67 623
[11] Li Y, Zhu X S, Lan P F, Zhang Q B, Qin M Y and Lu P X 2014 Phys. Rev. A 89 045401
[12] Vredenborg A, Roeterdink W G and Janssen M H M 2008 Rev. Sci. Instrum. 79 063108
[13] Wiley W C and McLaren I H 1955 Rev. Sci. Instrum. 26 1150
[14] Guilhaus M, Selby D and Mlynski V 2000 Mass Spectrom. Rev. 19 65
[15] Cheng J X, Ouyang X P, Zheng Y, Zhang A H and Ouyang M J 2008 Chin. Phys. B 17 02881
[16] Heck A J R and Chandler D W 1995 Annu. Rev. Phys. Chem. 46 335
[17] Thoman J W, Chandler D W, Parker D H and Janssen M H M 1988 Laser Chem. 9 27
[18] Houston P L 1996 J. Phys. Chem. 100 12757
[19] Smith L M, Keefer D R and Sudharsanan S I 1988 J. Quant. Spectrosc. Radiat. Transfer 39 367
[20] Dribinski V 2002 Rev. Sci. Instrum. 73 2634
[21] Vrakking M J J 2001 Rev. Sci. Instrum. 72 4084
[22] Eppink A T J B and Parker D H 1997 Rev. Sci. Instrum. 68 3477
[23] Wang P J and Fang Y 2008 Chin. Phys. B 17 3668
[24] Wiehle R 2003 Phys. Rev. A 67 063405
[25] Hertlein M P, Bucksbaum P H and Muller H G 1997 J. Phys. B: At. Mol. Opt. 30 L197
[26] Li M, Zhang P, Luo S Q, Zhou Y M, Zhang Q B, Lan P F and Lu P X 2015 Phys. Rev. A 92 063404
[27] Georges A T and Lambropoulos P 1978 Phys. Rev. A 18 587
[28] Liao Q, Zhou Y M, Huang C and Lu P X 2012 New J. Phys. 14 013001
[29] Yu G H, Geng Y G, Li L, Zhou C, Duan C B, Chai R P and Yang Y M 2015 Chin. Phys. B 24 103201
[30] Garcia G and Nahon L 2005 Rev. Sci. Instrum. 76 053302
[31] Ghafur O, Siu W, Johnsson P, Kling M F, Drescher M and Vrakking M J J 2009 Rev. Sci. Instrum. 80 033110
[32] Offerhaus H L, Nicole C, Lepine F, Bordas C, Rosca-Pruna F and Vrakking M J J 2001 Rev. Sci. Instrum. 72 3245
[33] Skruszewicz S, Passig J, Przystawik A, Truongd N X, Kothera M, Tiggesbaumkera J and MeiwesBroera K H 2014 Int. J. Mass. Spectrom. 365 338
[34] Kopold R, Becker W, Kleber M and Paulus G G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 217
[35] Deng Y K, Li M, Yu J Z, Liu Y X, Liu Y Q and Gong Q H 2014 Chin. Phys. Lett. 31 064207
[36] Wang B B, Cheng T W, Li X F, Fu P M and Yu X G 2005 Acta Phys. Sin. 54 3542 (in Chinese)
[37] Zhang P, Lan P F, Feng Z P, Zhang Q B and Lu P X 2014 Meas. Sci. Technol. 25 105202
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[3] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[4] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[5] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[6] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[7] Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
Hong Fan(范虹), Yiman Sun(孙一曼), Xiaojuan Zhang(张效娟), Chengcheng Zhang(张程程), Xiangjun Li(李向军), and Yi Wang(王乙). Chin. Phys. B, 2021, 30(7): 078703.
[8] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[9] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[10] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[11] Photoelectron imaging on vibrational excitation and Rydberg intermediate states in multi-photon ionization process of NH3 molecule
Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Le-Le Song(宋乐乐), Hai-Bin Du(杜海滨), Xiao-Chun Wang(王晓春), Lan-Lai He(赫兰海), Si-Zuo Luo(罗嗣佐), Qin Yang(杨钦), Jing Leng(冷静), Fu-Chun Liu(刘福春). Chin. Phys. B, 2020, 29(9): 093201.
[12] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[13] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[14] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[15] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
No Suggested Reading articles found!