|
|
Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer |
Peng Zhang(张鹏)1, Zheng-Peng Feng(冯正鹏)1, Si-Qiang Luo(罗四强)1, Zhe Wang(王哲)2 |
1. Huazhong University of Science and Technology, Wuhan 430074, China;
2. Wuhan Institute of Technology, Wuhan 430073, China |
|
|
Abstract We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion with low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size.
|
Received: 21 September 2015
Revised: 11 November 2015
Accepted manuscript online:
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
33.60.+q
|
(Photoelectron spectra )
|
|
07.81.+a
|
(Electron and ion spectrometers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11234004 and 61275126). |
Corresponding Authors:
Zhe Wang
E-mail: 972153190@qq.com
|
Cite this article:
Peng Zhang(张鹏), Zheng-Peng Feng(冯正鹏), Si-Qiang Luo(罗四强), Zhe Wang(王哲) Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer 2016 Chin. Phys. B 25 033202
|
[1] |
Zhang N, Bao W X, Yang J H and Zhu X N 2013 Chin. Phys. B 22 054209
|
[2] |
He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B and Lu P X 2015 Phys. Rev. A 91 023428
|
[3] |
Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X and Sun J Z 2007 Chin. Phys. Lett. 24 1537
|
[4] |
Lan P F, Takahashi E J and Midorikawa K 2012 Phys. Rev. A 86 013418
|
[5] |
Huang C, Lan P F, Zhou Y M, Zhang Q B, Liu K L and Lu P X 2014 Phys. Rev. A 90 043420
|
[6] |
Jia Z M, Zeng Z N, Li R X, Xu Z Z and Deng Y P 2015 Chin. Phys. B 24 013204
|
[7] |
Korneev P A, Popruzhenko S V, Goreslavski S P, Yan T M, Bauer D, Becker W, Kübel M, Kling M F, Rodel C, Wü$nsche M and Paulus G G 2012 Phys. Rev. Lett. 108 223601
|
[8] |
Zhou Y M, Huang C, Liao Q and Lu P X 2012 Phys. Rev. Lett. 109 053004
|
[9] |
Tong A H, Zhou Y M and Lu P X 2015 Opt. Express 23 15774
|
[10] |
Posthumus J H 2004 Rep. Prog. Phys. 67 623
|
[11] |
Li Y, Zhu X S, Lan P F, Zhang Q B, Qin M Y and Lu P X 2014 Phys. Rev. A 89 045401
|
[12] |
Vredenborg A, Roeterdink W G and Janssen M H M 2008 Rev. Sci. Instrum. 79 063108
|
[13] |
Wiley W C and McLaren I H 1955 Rev. Sci. Instrum. 26 1150
|
[14] |
Guilhaus M, Selby D and Mlynski V 2000 Mass Spectrom. Rev. 19 65
|
[15] |
Cheng J X, Ouyang X P, Zheng Y, Zhang A H and Ouyang M J 2008 Chin. Phys. B 17 02881
|
[16] |
Heck A J R and Chandler D W 1995 Annu. Rev. Phys. Chem. 46 335
|
[17] |
Thoman J W, Chandler D W, Parker D H and Janssen M H M 1988 Laser Chem. 9 27
|
[18] |
Houston P L 1996 J. Phys. Chem. 100 12757
|
[19] |
Smith L M, Keefer D R and Sudharsanan S I 1988 J. Quant. Spectrosc. Radiat. Transfer 39 367
|
[20] |
Dribinski V 2002 Rev. Sci. Instrum. 73 2634
|
[21] |
Vrakking M J J 2001 Rev. Sci. Instrum. 72 4084
|
[22] |
Eppink A T J B and Parker D H 1997 Rev. Sci. Instrum. 68 3477
|
[23] |
Wang P J and Fang Y 2008 Chin. Phys. B 17 3668
|
[24] |
Wiehle R 2003 Phys. Rev. A 67 063405
|
[25] |
Hertlein M P, Bucksbaum P H and Muller H G 1997 J. Phys. B: At. Mol. Opt. 30 L197
|
[26] |
Li M, Zhang P, Luo S Q, Zhou Y M, Zhang Q B, Lan P F and Lu P X 2015 Phys. Rev. A 92 063404
|
[27] |
Georges A T and Lambropoulos P 1978 Phys. Rev. A 18 587
|
[28] |
Liao Q, Zhou Y M, Huang C and Lu P X 2012 New J. Phys. 14 013001
|
[29] |
Yu G H, Geng Y G, Li L, Zhou C, Duan C B, Chai R P and Yang Y M 2015 Chin. Phys. B 24 103201
|
[30] |
Garcia G and Nahon L 2005 Rev. Sci. Instrum. 76 053302
|
[31] |
Ghafur O, Siu W, Johnsson P, Kling M F, Drescher M and Vrakking M J J 2009 Rev. Sci. Instrum. 80 033110
|
[32] |
Offerhaus H L, Nicole C, Lepine F, Bordas C, Rosca-Pruna F and Vrakking M J J 2001 Rev. Sci. Instrum. 72 3245
|
[33] |
Skruszewicz S, Passig J, Przystawik A, Truongd N X, Kothera M, Tiggesbaumkera J and MeiwesBroera K H 2014 Int. J. Mass. Spectrom. 365 338
|
[34] |
Kopold R, Becker W, Kleber M and Paulus G G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 217
|
[35] |
Deng Y K, Li M, Yu J Z, Liu Y X, Liu Y Q and Gong Q H 2014 Chin. Phys. Lett. 31 064207
|
[36] |
Wang B B, Cheng T W, Li X F, Fu P M and Yu X G 2005 Acta Phys. Sin. 54 3542 (in Chinese)
|
[37] |
Zhang P, Lan P F, Feng Z P, Zhang Q B and Lu P X 2014 Meas. Sci. Technol. 25 105202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|