Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 025203    DOI: 10.1088/1674-1056/25/2/025203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A hybrid mode of one- and two-surface multipactor on grooved dielectric surface

Li-Bing Cai(蔡利兵)1,2, Jian-Guo Wang(王建国)1,2, Guo-Xin Cheng(程国新)2, Xiang-Qin Zhu(朱湘琴)2
1. Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
2. Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  A hybrid mode of one- and two-surface multipactor on the grooved dielectric surface is studied in detail using both an analytical approach and two-dimensional particle-in-cell (2D PIC) simulations. When the groove width L< eE0/(4π mef2), there are one-surface multipactor and one-order two-surface multipactor on the grooved dielectric surface, and only one slope of the groove has the multipactor anytime. When L< eE0/(4π mef2), both slopes may have the multipactors. The electron surface density of the multipactor discharge has a sharp increase at the length L< eE0/(4π mef2).
Keywords:  multipactor      dielectric surface      particle simulation  
Received:  02 August 2015      Revised:  20 August 2015      Accepted manuscript online: 
PACS:  52.80.Vp (Discharge in vacuum)  
  77.22.Jp (Dielectric breakdown and space-charge effects)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61231003).
Corresponding Authors:  Jian-Guo Wang     E-mail:  wanguiuc@mail.xjtu.edu.cn

Cite this article: 

Li-Bing Cai(蔡利兵), Jian-Guo Wang(王建国), Guo-Xin Cheng(程国新), Xiang-Qin Zhu(朱湘琴) A hybrid mode of one- and two-surface multipactor on grooved dielectric surface 2016 Chin. Phys. B 25 025203

[1] Vaughan J 1998 IEEE Trans. Electron Dev. 35 1172
[2] Miller H C 1989 IEEE Trans. Electrical Insulation 24 765
[3] Anderson R A and Brainard J P 1980 J. Appl. Phys. 51 1414
[4] Chang C, Liu G Z, Huang H J, Chen C H and Fang J Y 2009 Phys. Plasmas 16 083501
[5] Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y, Zhu X X and Zhang Y P 2009 J. Appl. Phys. 105 123305
[6] Ivanov O A, Lobaev M A, Isaev V A and Vikharev A L 2010 Phys. Rev. ST Accel. Beams 13 022004
[7] Sazontov A G and Nevchaev V E 2010 Phys. Plasmas 17 033509
[8] Kishek R A and Lau Y Y 1998 Phys. Rev. Lett. 80 193
[9] Ang L K, Lau Y Y, Kishek R A and Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290
[10] Kim H C and Verboncoeur J P 2005 Phys. Plasmas 12 123504
[11] Kim H C and Verboncoeur J P 2006 Phys. Plasmas 13 123506
[12] Cai L B and Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese)
[13] Wang J G, Cai L B, Zhu X Q, Wang Y and Xuan C 2010 Phys. Plasmas 17 063503
[14] Chang C, Liu G Z, Tang C X, Chen C H and Fang J Y 2011 Phys. Plasmas 18 055702
[15] Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C and Xia H F 2011 Phys. Plasmas 18 073504
[16] Liu X H, He W, Yang F, Wang H Y, Liao R J and Xiao H G 2012 Chin. Phys. B 21 075201
[17] Kishek R A 2012 Phys. Rev. Lett. 108 035003
[18] Cheng G X and Liu L 2013 Appl. Phys. Lett. 102 243506
[19] Dong Y, Dong Z W, Yang W Y, Zhou Q H and Zhou H J 2013 Acta Phys. Sin. 62 197901 (in Chinese)
[20] Dong Y, Zhou Q H, Yang W Y, Dong Z W and Zhou H J 2014 Acta Phys. Sin. 63 185206 (in Chinese)
[21] Zhao P C, Liao C, Yang D and Zhong X M 2014 Chin. Phys. B 23 055101
[22] Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L and Sombrin J 2002 Phys. Plasmas 9 4736
[23] Cai L B, Wang J G, Zhang D H, Du T J, Zhu X Q and Wang Y 2012 Phys. Plasmas 19 073516
[24] Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H and Li X 2009 Phys. Plasmas 16 033108
[25] Cai L B, Wang J G, Cheng G X, Zhu X Q, Xia H F 2015 J. Appl. Phys. 117 053302
[26] Wang J, Wang Y and Zhang D 2006 IEEE Trans. Plasma Sci. 34 681
[1] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[2] An improved secondary electrons energy spectrum model and its application in multipactor discharge
Wan-Zhao Cui(崔万照), Heng Zhang(张恒), Yun Li(李韵), Yun He(何鋆), Qi Wang(王琪), Hong-Tai Zhang(张洪太), Hong-Guang Wang(王洪广), Jing Yang(杨晶). Chin. Phys. B, 2018, 27(3): 038401.
[3] An efficient multipaction suppression method in microwave components for space application
Wan-Zhao Cui(崔万照), Yun Li(李韵), Jing Yang(杨晶), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Rui Wang(王瑞), Na Zhang(张娜), Hong-Tai Zhang(张洪太), Yong-Ning He(贺永宁). Chin. Phys. B, 2016, 25(6): 068401.
[4] A high-power subterahertz surface wave oscillator with separated overmoded slow wave structures
Guang-Qiang Wang(王光强), Jian-Guo Wang(王建国), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳), Shuang Li(李爽). Chin. Phys. B, 2016, 25(12): 128401.
[5] A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure
Tao Jiang(江涛), Jun-Tao He(贺军涛), Jian-De Zhang(张建德), Zhi-Qiang Li(李志强), Jun-Pu Ling(令钧溥). Chin. Phys. B, 2016, 25(12): 125202.
[6] Mode analysis and design of 0.3-THz Clinotron
Shuang Li(李爽), Jian-Guo Wang(王建国), Guang-Qiang Wang(王光强), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳). Chin. Phys. B, 2016, 25(10): 108401.
[7] Photodetachment microscopy of H- in the magnetic field near different dielectric surfaces
Tang Tian-Tian (唐田田), Zhang Min (张敏), Zhang Chao-Min (张朝民). Chin. Phys. B, 2015, 24(6): 063401.
[8] Test particle simulations of resonant interactions between energetic electrons and discrete, multi-frequency artificial whistler waves in the plasmasphere
Chang Shan-Shan (常珊珊), Ni Bin-Bin (倪彬彬), Zhao Zheng-Yu (赵正予), Gu Xu-Dong (顾旭东), Zhou Chen (周晨). Chin. Phys. B, 2014, 23(8): 089401.
[9] Three-dimensional particle-in-cell method of simulating high power terahertz gyrotrons with planar structure
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥), Qiao Hai-Liang (乔海亮), Guo Wei-Jie (郭伟杰), Zhang Dian-Hui (张殿辉). Chin. Phys. B, 2014, 23(6): 068402.
[10] Three-dimensional simulation method of multipactor in microwave components for high-power space application
Li Yun (李韵), Cui Wan-Zhao (崔万照), Zhang Na (张娜), Wang Xin-Bo (王新波), Wang Hong-Guang (王洪广), Li Yong-Dong (李永东), Zhang Jian-Feng (张剑锋). Chin. Phys. B, 2014, 23(4): 048402.
[11] Theoretical and numerical studies on a planar gyrotronwith transverse energy extraction
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥). Chin. Phys. B, 2014, 23(10): 108401.
[12] Numerical study on the electron-wall interaction in a Hall thruster with segmented electrodes placed at the channel exit
Qing Shao-Wei (卿绍伟), E Peng (鄂鹏), Duan Ping (段萍), Xu Dian-Guo (徐殿国). Chin. Phys. B, 2013, 22(8): 085203.
[13] Effects of the insulated magnetic field and oblique incidence of electrons on the multipactor in MILO
Fan Jie-Qing(范杰清) and Hao Jian-Hong(郝建红). Chin. Phys. B, 2011, 20(6): 068402.
[14] Particle simulation on electron acceleration process by the laser ponderomotive force in inhomogeneous underdense plasma layers
Cao Li-Hua (曹莉华), Yu Wei (余玮), Xu Han (徐涵), Liu Zhan-Jun (刘占军), Zheng Chun-Yang (郑春阳), Li Bin (李斌). Chin. Phys. B, 2004, 13(8): 1302-1308.
No Suggested Reading articles found!