Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 108401    DOI: 10.1088/1674-1056/23/10/108401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical and numerical studies on a planar gyrotronwith transverse energy extraction

Chen Zai-Gao (陈再高)a b, Wang Jian-Guo (王建国)a b, Wang Yue (王玥)b
a Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
b Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  In this paper, we study the planar gyrotron theoretically and numerically. Applying the large-signal theory to the planar gyrotron, the wave equation of electric field and the equation of motion of an electron are simultaneously solved to obtain some characteristic parameters, such as the phase-space plot of electrons, working frequency, startup time, electronic efficiency, and output power of the device. To verify the formulations used in this paper, three-dimensional particle simulations are performed on the same device, and the numerical results accord well with those obtained by using the large-signal theory. Theoretical and numerical results show that the electronic efficiency can reach 21% for the prototype of the planar gyrotron working at the frequency of 0.81 THz.
Keywords:  planar gyrotron      terahertz      large-signal theory      particle simulation  
Received:  24 December 2013      Revised:  26 April 2014      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  45.10.Db (Variational and optimization methods)  
  52.65.-y (Plasma simulation)  
Corresponding Authors:  Wang Jian-Guo     E-mail:  wanguiuc@mail.xjtu.edu.cn
About author:  84.40.Fe; 45.10.Db; 52.65.-y

Cite this article: 

Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥) Theoretical and numerical studies on a planar gyrotronwith transverse energy extraction 2014 Chin. Phys. B 23 108401

[13]Sun G and Trueman C W 2003 Electron. Lett. 39 595
[1]Su H S, Wang X F and Lin Z L 2009 IEEE Trans. Autom. Control 54 293
[14]Chen J and Wang J 2009 IEEE Trans. Anten. Propag. 57 3375
[2]Su H S, Chen M Z Q, Wang X F, Chen G R and Wang H W 2013 IEEE Trans. Cybern. 43 394
[3]Vicsek T, Czirok A, Jacob E B, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[15]Shin Y M, Baig A, Barnett L R, Tsai W C and Luhmann N C 2012 IEEE Trans. Electron. Dev. 59 234
[4]Sun Y Z and Ruan J 2008 Chin. Phys. Lett. 25 3493
[5]Wu Z H, Peng L, Xie L B and Wen J W 2012 Chin. Phys. B 21 128902
[6]Sun Y Z and Ruan J 2008 Chin. Phys. B 17 4137
[16]Shi Z, Gamzina D, Barnett L R, Baig A and Luhmann N C 2013 IEEE Trans. Electron. Dev. 60 2912
[17]Chen Z, Wang J, Wang Y, Qiao H, Guo W and Zhang D 2014 Chin. Phys. B 23 068402.
[7]Bertsekas D P and Tsitsiklis J N 2007 IEEE Trans. Autom. Control 52 968
[18]Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M and Yuan Y 2010 Phys. Plasmas 17 073107
[8]Cao M, Morse A S and Anderson B D O 2008 SIAM J. Control Optim. 47 575
[19]Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H and Li X 2009 Phys. Plasmas 16 033108
[20]Wang J, Wang Y and Zhang D 2006 IEEE Trans. Plasma Sci. 34 681
[9]Cao M, Morse A S and Anderson B D O 2008 SIAM J. Control Optim. 47 601
[10]Xiao F and Wang L 2008 IEEE Trans. Autom. Control 53 1804
[21]Wang J G 2013 Mod. Appl. Phys. 4 251 (in Chinese)
[11]Tian Y P and Liu C L 2008 IEEE Trans. Autom. Control 53 2122
[22]Zhang H, Wang J, Tong C, Li X and Wang G 2009 Phys. Plasmas 16 123104
[12]Tian Y P and Liu C L 2009 Automatica 45 1347
[13]Zhang W G, Liu J Z, Zeng D L and Hu Y 2013 Chin. Phys. B 22 050511
[14]Park M J, Kwon O M, Park J H, Lee S M and Cha E J 2012 Chin. Phys. B 21 110508
[23]Li X, Wang J, Song Z, Chen C, Sun J, Zhang X and Zhang Y 2012 Phys. Plasmas 19 083111
[24]Wang G, Wang J, Li S, Wang X, Tong C and Lu X 2013 Acta Phys. Sin. 62 150701 (in Chinese)
[25]Li S, Wang J, Tong C, Wang G, Lu X and Wang X 2013 Acta Phys. Sin. 62 120703 (in Chinese)
[15]Gao L X, Zhang J J and Chen W H 2012 Math. Prob. Eng. 2012 273140
[16]Gao L X, Yan H J and Jin D 2010 Chin. Phys. B 19 050520
[17]Zhang W G, Zeng D L and Guo Z K 2010 Chin. Phys. B 19 070518
[18]Li J Z 2011 Chin. Phys. B 20 020512
[26]Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J and Zhang L G 2013 IEEE Trans. Electron. Dev. 60 2931
[19]Hong Y G, Chen G and Bushnell L 2008 Automatica 44 846
[27]Chen Z, Wang J, Wang Y, Qiao H, Zhang D and Guo W 2013 Phys. Plasmas 20 113103
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!