Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 068402    DOI: 10.1088/1674-1056/23/6/068402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Three-dimensional particle-in-cell method of simulating high power terahertz gyrotrons with planar structure

Chen Zai-Gao (陈再高)a b, Wang Jian-Guo (王建国)a b, Wang Yue (王玥)b, Qiao Hai-Liang (乔海亮)b, Guo Wei-Jie (郭伟杰)a, Zhang Dian-Hui (张殿辉)b
a School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
b Northwest Institute of Nuclear Technology, P. O. Box 69-1, Xi'an 710024, China
Abstract  Based on analyzing the large-signal theory of the planar gyrotron, it is suggested that a simplified structure of the device is used for simulating this kind of device, with the working characteristics of the device kept unchanged, i.e., the same as those of the device with the original structure. Thus, the computational burden can be significantly reduced. Using the proposed method, we simulate a planar gyrotron with its simplified parameters by using the UNIPIC-3D code. Numerical results show that the working frequency, output power, and electron efficiency are respectively about 0.813 THz, 14 kW, and 21%.
Keywords:  planar gyrotron      terahertz      particle simulation  
Received:  23 October 2013      Revised:  30 November 2013      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  45.10.Db (Variational and optimization methods)  
  52.65.-y (Plasma simulation)  
Corresponding Authors:  Wang Jian-Guo     E-mail:  wanguiuc@mail.xjtu.edu.cn

Cite this article: 

Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥), Qiao Hai-Liang (乔海亮), Guo Wei-Jie (郭伟杰), Zhang Dian-Hui (张殿辉) Three-dimensional particle-in-cell method of simulating high power terahertz gyrotrons with planar structure 2014 Chin. Phys. B 23 068402

[1] Siegel P H 2002 IEEE Trans. Microwave Theory Technol. 50 910
[2] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J and Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54
[3] Zhang T Y and Cao J C 2004 Chin. Phys. 13 1742
[4] Chen Z and Cao J C 2013 Chin. Phys. B 22 059201
[5] Glyavin M Y, Luchinin A G and Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101
[6] Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin A, Manuilov V, Mitsudo S, Ogawa I, Saito T, Tatematsu Y and Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36
[7] Wang G, Wang J, Tong C, Li X, Wang X, Li S and Lu X 2013 Phys. Plasmas 20 043105
[8] Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R and Williams G P 2002 Nature 420 153
[9] Gong Y, Yin H, Yue L, Lu Z, Wei Y, Feng J, Duan Z and Xu X 2011 IEEE Trans. Plasma Sci. 39 847
[10] Ginzburg N S, Zotova I V, Sergeev A S, Zaslavsky V Y and Zheleznov I V 2012 Phys. Rev. Lett. 108 105101
[11] Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M and Yuan Y 2010 Phys. Plasmas 17 073107
[12] Wang J, Wang Y and Zhang D 2006 IEEE Trans. Plasma Sci. 34 681
[13] Wang J G 2013 Mod. Appl. Phys. 4 251 (in Chinese)
[14] Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H and Li X 2009 Phys. Plasmas 16 033108
[15] Zhang H, Wang J, Tong C, Li X and Wang G 2009 Phys. Plasmas 16 123104
[16] Li X, Wang J, Song Z, Chen C, Sun J, Zhang X and Zhang Y 2012 Phys. Plasmas 19 083111
[17] Wang G, Wang J, Li S, Wang X, Tong C and Lu X 2013 Acta Phys. Sin. 62 150701 (in Chinese)
[18] Li S, Wang J, Tong C, Wang G, Lu X and Wang X 2013 Acta Phys. Sin. 62 120703 (in Chinese)
[19] Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J and Zhang L G 2013 IEEE Trans. Electron Dev. 60 2931
[20] Chen Z, Wang J, Wang Y, Qiao H, Zhang D and Guo W 2013 Phys. Plasmas 20 113103
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!