Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 127303    DOI: 10.1088/1674-1056/25/12/127303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments

Han-Lu Ma(马寒露), Zhong-Qiang Wang(王中强), Hai-Yang Xu(徐海阳), Lei Zhang(张磊), Xiao-Ning Zhao(赵晓宁), Man-Shu Han(韩曼舒), Jian-Gang Ma(马剑钢), Yi-Chun Liu(刘益春)
Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory for Ultra Violet(UV) Light-Emitting Materials andTechnology of Ministry of Education, Northeast Normal University, Changchun 130024, China
Abstract  

In this study, the unipolar resistive switching (URS) and bipolar resistive switching (BRS) are demonstrated to be coexistent in the Ag/ZnO/Pt memory device, and both modes are observed to strongly depend on the polarity of forming voltage. The mechanisms of the URS and BRS behaviors could be attributed to the electric-field-induced migration of oxygen vacancies (VO) and metal-Ag conducting filaments (CFs) respectively, which are confirmed by investigating the temperature dependences of low resistance states in both modes. Furthermore, we compare the resistive switching (RS) characteristics (e.g., forming and switching voltages, reset current and resistance states) between these two modes based on VO- and Ag-CFs. The BRS mode shows better switching uniformity and lower power than the URS mode. Both of these modes exhibit good RS performances, including good retention, reliable cycling and high-speed switching. The result indicates that the coexistence of URS and BRS behaviors in a single device has great potential applications in future nonvolatile multi-level memory.

Keywords:  resistive switching      unipolar      bipolar      oxygen vacancy      metal      conductive filament  
Received:  15 March 2016      Revised:  05 August 2016      Accepted manuscript online: 
PACS:  73.40.Sx (Metal-semiconductor-metal structures)  
  77.55.hf (ZnO)  
  77.22.Jp (Dielectric breakdown and space-charge effects)  
Fund: 

Project supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 51422201), the National Natural Science Foundation of China (Grant Nos. 51172041, 51372035, 11304035, 61574031, and 61404026), the National Basic Research Program of China (Grant No. 2012CB933703), the "111" Project, China (Grant No. B13013), the Fund from Jilin Province, China (Grant Nos. 20140520106JH and 20140201008GX), the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130043110004), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2412015KJ008 and 2412016KJ003).

Corresponding Authors:  Zhong-Qiang Wang, Hai-Yang Xu     E-mail:  wangzq752@nenu.edu.cn;hyxu@nenu.edu.cn

Cite this article: 

Han-Lu Ma(马寒露), Zhong-Qiang Wang(王中强), Hai-Yang Xu(徐海阳), Lei Zhang(张磊), Xiao-Ning Zhao(赵晓宁), Man-Shu Han(韩曼舒), Jian-Gang Ma(马剑钢), Yi-Chun Liu(刘益春) Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments 2016 Chin. Phys. B 25 127303

[1] Waser R and Aono M 2007 Nat. Mater. 6 833
[2] Sun H T, Liu Q, Li C F, Long S B, Lv H B, Bi C, Huo Z L, Li L and Liu M 2014 Adv. Funct. Mater. 24 5679
[3] Wang Z Q, Li X H, Xu H Y, Wang W, Yu H, Zhang X T, Liu Y X and Liu Y C 2010 J. Phys. D:Appl. Phys. 43 385105
[4] Zhang L, Xu H Y, Wang Z Q, Zhao X N, Ma J G and Liu Y C 2014 J. Phys. D:Appl. Phys. 47 455101
[5] Ambrogio S, Balatti S, Choi S and Ielmini D 2014 Adv. Mater. 26 3885
[6] Wu H Y, Zhang J, Zhang Q L, Yang H and Luo J K 2014 Chin. Phys. Lett. 31 057305
[7] Song S, Cho B, Kim T, Ji Y, Jo M, Wang G, Choe M, Kahng Y H, Hwang H and Lee T 2010 Adv. Mater. 22 5048
[8] Hosseini N R and Lee J S 2015 ACS Nano 9 419
[9] Cho B, Yun J M, Song S, Ji Y, Kim D Y and Lee T 2011 Adv. Funct. Mater. 21 3976
[10] Song Y, Jang J, Yoo D, Jung S H, Hong S, Lee J K and Lee T 2015 Organic Electronics 17 192
[11] Pang H and Deng N 2014 Chin. Phys. Lett. 31 107303
[12] Tan T T, Chen X, Guo T T and Liu Z T 2013 Chin. Phys. Lett. 30 107302
[13] Jiang R, Du X H, Han Z Y and Sun W D 2015 Acta Phys. Sin. 64 207302 (in Chinese)
[14] Lei X Y, Liu H X, Gao H X, Yang H N, Wang G M, Long S B, Ma X H and Liu M 2014 Chin. Phys. B 23 117305
[15] Wu H Q, Wu M H, Li X Y, Bai Y, Deng N, Yu Z P and Qian H 2015 Chin. Phys. B 24 058501
[16] Ismail M, Abbas M W, Rana A M, Talib I, Ahmed E, Nadeem M Y, Tsai T L, Chand U, Shah N A, Hussain M, Aziz A and Bhatti M T 2014 Chin. Phys. B 23 126101
[17] Chuang M Y, Chen Y C, Su Y K, Hsiao C H, Huang C S, Tsai J J and Yu H C 2014 ACS Appl. Mater. Interf. 6 5432
[18] Dongale T D, Khot K V, Mali S S, Patil P S, Gaikwad P K, Kamat R K and Bhosale P N 2015 Mater. Sci. Semicond. Process. 40 523
[19] Zhao J, Dong J Y, Ren S X, Zhang L Y, Zhao X and Chen W 2014 Chin. Phys. B 23 127301
[20] Wang Z Q, Xu H Y, Zhang L, Li X H, Ma J G, Zhang X T and Liu Y C 2013 Nanoscale 5 4490
[21] Zhao X N, Xu H Y, Wang Z Q, Zhang L, Ma J G and Liu Y C 2015 Carbon 91 38
[22] Xu D L, Xiong Y, Tang M H, Zeng B W, Xiao Y G and Wang Z P 2013 Chin. Phys. B 22 117314
[23] Hu W, Chen X M, Wu G H, Lin Y T, Qin N and Bao D H 2012 Appl. Phys. Lett. 101 063501
[24] Xu D L, Xiong Y, Tang M H and Zeng B W 2014 J. Alloys Compd. 584 269
[25] Lee S, Kim H, Park J and Yong K 2010 J. Appl. Phys. 108 076101
[26] Calderoni A, Sills S and Ramaswamy N 2014 IEEE IMW Tech. Dig. pp. 1-4
[27] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
[28] Fan H B, Yang S Y, Zhang P F, Wei H Y, Liu X L, Jiao C M, Zhu Q S, Chen Y H and Wang Z G 2007 Chin. Phys. Lett. 24 2108
[29] Liang K D, Huang C H, Lai C C, Huang J S, Tsai H W, Wang Y C, Shih Y C, Chang M T, Lo S C and Chueh Y L 2014 ACS Appl. Mater. Interf. 6 16537
[30] Bid A, Bora A and Raychaudhuri A K 2006 Phys. Rev. B 74 035426
[31] Xue W H, Xiao W, Shang J, Chen X X, Zhu X J, Pan L, Tan H W, Zhang W B, Ji Z H, Liu G, Xu X H, Ding J and Li R W 2014 Nanotechnology 25 425204
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[5] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[6] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[9] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[10] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[11] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[12] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[13] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[14] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[15] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
No Suggested Reading articles found!