Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124211    DOI: 10.1088/1674-1056/25/12/124211
RAPID COMMUNICATION Prev   Next  

Microscale vortex laser with controlled topological charge

Xing-Yuan Wang(王兴远)1, Hua-Zhou Chen(陈华洲)1, Ying Li(黎颖)1, Bo Li(李波)1, Ren-Min Ma(马仁敏)1,2
1. State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
2. Collaborative Innovation Center of Quantum Matter, Beijing, China
Abstract  

A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities.

Keywords:  exceptional point      non-Hermitian system      orbital angular momentum      vortex laser  
Received:  20 October 2016      Revised:  07 November 2016      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Sa (Microcavity and microdisk lasers)  
  42.60.By (Design of specific laser systems)  
Fund: 

Project supported by the "Youth 1000 Talent Plan" Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

Corresponding Authors:  Ren-Min Ma     E-mail:  renminma@pku.edu.cn

Cite this article: 

Xing-Yuan Wang(王兴远), Hua-Zhou Chen(陈华洲), Ying Li(黎颖), Bo Li(李波), Ren-Min Ma(马仁敏) Microscale vortex laser with controlled topological charge 2016 Chin. Phys. B 25 124211

[1] Padgett M, Courtial J and Allen L 2004 Phys. Today 57 35
[2] Allen L, Beijersbergen M W, Spreeuw R and Woerdman J P 1992 Phys. Rev. A 45 8185
[3] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161
[4] Mair A, Vaziri A, Weihs G and Zeilinger A 2011 Nature 412 313
[5] Molina-Terriza G, Torres J P and Torner L 2007 Nat. Phys. 3 305
[6] Wang J, Yang J Y, Fazal I M, et al. 2012 Nat. Photon. 6 488
[7] Hui X N, Zheng S L, Chen Y L, et al. 2015 Sci. Rep. 5 10148
[8] Tamburini F, Anzolin G, Umbriaco G, Bianchini A and Barbieri C 2006 Phys. Rev. Lett. 97 163903
[9] He H, Heckenberg N R and Rubinszteindunlop H 1995 J. Mod. Opt. 42 217
[10] Friese M, Enger J, Rubinszteindunlop H and Heckenberg N R 1996 Phys. Rev. A 54 1593
[11] Toyoda K, Miyamoto K, Aoki N, Morita R and Omatsu T 2012 Nano Lett. 12 3645
[12] Zhou Z Y, Li Y, Ding D S, et al. 2014 Opt. Lett. 39 5098
[13] Fürhapter S, Jesacher A, Bernet S and Ritsch-Marte M 2005 Opt. Lett. 30 1953
[14] Torner L, Torres J P and Carrasco S 2005 Opt. Express 13 873
[15] Beijersbergen M W, Coerwinkel R, Kristensen M and Woerdman J P 1994 Opt. Commun. 112 321
[16] Li H L, Phillips D B, Wang X Y, et al. 2015 Optica 2 547
[17] Heckenberg N R, Mcduff R, Smith C P and White A G 1992 Opt. Lett. 17 221
[18] Marrucci L, Manzo C and Paparo D 2006 Phys. Rev. Lett. 96 163905
[19] Yu N F, Genevet P, Kats M A, et al. 2011 Science 334 333
[20] He J W, Wang X K, Hu D, et al. 2013 Opt. Express 21 20230
[21] Senatsky Y, Bisson JF, Li J, Shirakawa A, Thirugnanasambandam M and Ueda K I 2012 Opt. Rev. 19 201
[22] Oron R, Davidson N, Friesem A A, Hasman E and 2000 Opt. Commun. 182 205
[23] Oron R, Danziger Y, Davidson N, Friesem A A and Hasman E 1999 Opt. Commun. 169 115
[24] Bisson J F, Senatsky Y and Ueda K I 2005 Laser Phys. Lett. 7 327
[25] Itoh M and Yatagai T 2005 Opt. Express 15 7616
[26] Caley A J, Thomson M J, Liu J S, Waddie A J and Taghizadeh M R 2007 Opt. Express 15 10699
[27] Ito A, Kozawa Y and Sato S 2010 J. Opt. Soc. Am. A 27 2072
[28] Kano K, Kozawa Y and Sato S 2012 Int. J. Opt. 359 141
[29] Naidoo D, Roux F S, Dudley A, et al. 2016 Nat. Photon. 10 327
[30] Cai X L, Wang J W, Strain M J, et al. 2012 Science 338 363
[31] Heiss W D 2004 J. Phys. A:Math. Gen. 37 2455
[32] Wiersig J 2014 Phys. Rev. A 89 012119
[33] Lin Z, Ramezani H, Eichelkraut T, et al. 2011 Phys. Rev. Lett. 106 213901
[34] Peng B, Ozdemir S K, Rotter S, et al. 2016 Porc. Natl. Acad. Sci. 113 6845
[35] Liertzer M, Ge L, Cerjan A, et al. 2012 Phys. Rev. Lett. 108 173901
[36] Peng B, Ozdemir S K, Rotter S, et al. 2014 Science 346 328
[37] Dembowski C, Graf H D, Harney H L, et al. 2001 Phys. Rev. Lett. 86 787
[38] Heiss W D and Harney H L 2001 Eur. Phys. J. D 17 149
[39] Cao H and Wiersig J 2015 Rev. Mod. Phys. 87 61
[40] Zhu J G, Ozdemir S K, He L N and Yang L 2010 Opt. Express 18 23535
[41] Wiersig J 2014 Phys. Rev. Lett. 112 203901
[42] Wiersig J 2016 Phys. Rev. A 93 033809
[43] Miao P, Zhang Z, Sun J, et al. 2016 Science 353 464
[44] Killinger D 2002 Opt. Photon. News 13 36
[45] Frateschi N C and Levi A F J 1996 J. Appl. Phys. 80 644
[46] Wiersig J, Eberspacher A, Shim J B, et al. 2011 Phys. Rev. A 84 023845
[47] Leuthold J, Mayer M, Eckner J, Guekos G and Melchior H 2000 J. Appl. Phys. 87 618
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[6] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[7] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[8] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[9] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[10] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[11] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[12] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[13] Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(10): 100309.
[14] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[15] Non-Hermitian quasicrystal in dimerized lattices
Longwen Zhou(周龙文) and Wenqian Han(韩雯岍). Chin. Phys. B, 2021, 30(10): 100308.
No Suggested Reading articles found!