Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117804    DOI: 10.1088/1674-1056/25/11/117804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

Jiahui Lu(卢佳慧), Guanghui Wang(王光辉)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
Abstract  We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell's equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators.
Keywords:  hyperbolic metamaterial      waveguide      dispersion      optical force  
Received:  25 March 2016      Revised:  20 July 2016      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  42.70.-a (Optical materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).
Corresponding Authors:  Guanghui Wang     E-mail:  wanggh@scnu.edu.cn

Cite this article: 

Jiahui Lu(卢佳慧), Guanghui Wang(王光辉) Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides 2016 Chin. Phys. B 25 117804

[1] Ashkin A 1970 Phys. Rev. Lett 24 156
[2] Sudeep M, Xavier S and David E 2010 Nano Lett 10 99
[3] Yang A H J, Moore S D, Schmidt B S, Matthew K, Michal L and David E 2009 Nature 457 71
[4] Li M, Pernice W H P, Xiong C, Baehr-Jones T, Hochberg M and Tang H X 2010 Nature 456 480
[5] Chu S 1991 Science 253 861
[6] Povinelli M L, Johnson S G, Loncar M, Ibanescu M, Smythe E J, Capasso F and Joannopoulos J D 2005 Opt. Express 13 8286
[7] Matt E, Ryan C, Jasper C, Vahala K J and Oskar P 2009 Nature 459 550
[8] Rakich P T, Popovic M A, Soljacic M and Ippen E P 2007 Nat. Photon. 1 658
[9] Almeida V R, Xu Q, Barrios C A and Lipson M 2004 Opt. Lett. 29 001209
[10] Povinelli M L, Marko L, Mihai I, Smythe E J, Johnson S G, Federico C and Joannopoulos J D 2005 Opt. Lett. 30 003042
[11] Yang X, Liu Y, Oulton R F, Yin X and Zhang X 2011 Nano Lett. 11 321
[12] Yingran H, Sailing H and Yang X D 2012 Chin. Phys. B 37 002907
[13] Jie Y, Zhaowei L, Yongmin L, Yuan W, Cheng S, Guy B, Stacy A M and Zhang X 2008 Science 321 930
[14] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[15] Hyesog L, Zhaowei L, Yi X, Cheng S and Xiang Z 2007 Opt. Express 15 015886
[16] Yan W, Wubs M, Mortensen N A 2012 Phys. Rev. B 86 205429
[17] Lu W T, Huang Y J, Casse B D F, Banyal R K and Sridhar S 2010 Appl. Phys. Lett. 96 211112
[18] Pavel G, Krasavin A V, Poddubny A N, Belov P A, Kivshar Y S and Zayats A V 2013 Phys. Rev. Lett. 111 036804
[19] Yingran H, Sailing H, Jie G and Xiaodong Y 2012 Opt. Express 20 022372
[20] Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G and Zhang X 2010 Nat. Commun. 1 749
[21] Casse B D F, Lu W T, Huang Y J, Gultepe E, Menon L and Sridhar S 2010 Appl. Phys. Lett. 96 023114
[22] Tian J, Junming Z and Yijun F 2009 Opt. Express 17 000170
[23] Wei Y, Asger M N and Martijn W 2013 Opt. Express 21
[24] Boardman A D 1982 Electromagnetic Surface Modes (New York:Wiley) pp. 12-14
[25] Valagiannopoulos C A, Mirmoosa M S, Nefedov I S, Tretyakov S A and Simovski C R 2014 J. Appl. Phys. 116 163106
[26] Boardman A D, Egan P and McCall M 2015 EPJ Appl. Metamat. 2 11
[27] Riboli F, Recati A, Antezza M and Carusotto I 2007 Eur. Phys. J. D 46 157
[28] Narimanov E E 2013 Nat. Photon. 7 948
[29] David W, Marko L and Federico C 2009 Opt. Express 17 019996
[30] Zhang W F and Wang G H 2014 Plasmonics 9 979
[31] Riboli F, Recati A, Antezza M and Carusotto I 2007 Eur. Phys. J. D 46 157
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[7] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[8] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[9] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[10] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[11] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
No Suggested Reading articles found!