Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117803    DOI: 10.1088/1674-1056/25/11/117803
RAPID COMMUNICATION Prev   Next  

Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction

Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Yang Jiang(江洋), Lu Wang(王禄), Haojun Yang(杨浩军), Yangfeng Li(李阳锋), Peng Zuo(左朋), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Junming Zhou(周钧铭), Wuming Liu(刘伍明), Hong Chen(陈弘)
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported. According to the well established light-to-electricity conversion theory, quantum wells (QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels, owing to quantum confinement, and cannot form a photocurrent. We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent, indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs. We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions. Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.

Keywords:  p-n junction      carrier transportation      quantum wells      light-to-electricity conversion  
Received:  16 August 2016      Revised:  28 September 2016      Accepted manuscript online: 
PACS:  78.67.Lt (Quantum wires)  
  73.40.&ndash  
  c  
  72.20.&ndash  
  I  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, and 11374340) and the Innovative Clean-energy Research and Application Program of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515001).

Corresponding Authors:  Hong Chen     E-mail:  hchen@iphy.ac.cn

Cite this article: 

Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Yang Jiang(江洋), Lu Wang(王禄), Haojun Yang(杨浩军), Yangfeng Li(李阳锋), Peng Zuo(左朋), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Junming Zhou(周钧铭), Wuming Liu(刘伍明), Hong Chen(陈弘) Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction 2016 Chin. Phys. B 25 117803

[1] Green M A 2009 Prog. Photovoltaics 17183
[2] Dimroth F, Grave M and Beutel P 2014 Prog. Photovoltaics 22277
[3] Gloeckler M, Sankin I and Zhao Z 2013 IEEE J. Photovoltaics 31389
[4] Chirila A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk Y E, Bilger G and Tiwari A N 2011 Nat. Mat. 10857
[5] Rogalski A 2005 Rep. Prog. Phys. 682267
[6] Callewaert F, Hoang A M and Razeghi M 2014 Appl. Phys. Lett. 104053508
[7] Korona K P, Drabinska A, Caban P and Strupi nski W 2009 J. Appl. Phys. 105083712
[8] Chen X, Zhu H, Cai J and Wu Z 2007 J. Appl. Phys. 102024505
[9] Zhang H, Babichev A V, Jacopin G, Lavenus P, Julien F H, Egorov A Y, Zhang J, Pauporte T and Tchernycheva M 2013 J. Appl. Phys. 114234505
[10] Grundmann M 2010 The Physics of Semiconductors (Heidelberg:Springer-Verlag)
[11] Basu P K 1997 Theory of Optical Processes in Semiconductors:Bulk and Microstructures (New York:Oxford University Press)
[12] Barnham K W J, Ballard I, Connolly J P, Ekins-Daukes N J, Kluftinger B G, Nelson J and Rohr C 2002 Physica E 1427
[13] Gurioli M, Martinez-Pastor J, Colocci M, Deparis C, Chastaingt B and Massies J 1992 Phys. Rev. B 466922
[14] Botha J R and Leitch A W R 1994 Phys. Rev. B 5018147
[15] Levi D H, Wake D R, Klein M V, Kumar S and Morkoç H 1992 Phys. Rev. B 454274
[16] Graham D M, Dawson P, Godfrey M J, Kappers M J and Humphreys C J 2006 Appl. Phys. Lett. 89211901
[17] Fonash S J 2010 Solar Cell Device Physics (Burlington:Academic Press/Elsevier)
[18] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 532173
[19] Nozik A J 2001 Annu. Rev. Phys. Chem. 52193
[20] Ridley B K 1982 J. Phys. C:Solid State Phys. 155899
[21] Smith M, Lin J Y, Jiang H X, Khan A, Chen Q, Salvador A, Botchkarev A, Kim W and Morkoc H 1997 Appl. Phys. Lett. 702882
[22] Ng H M, Doppalapudi D, Moustakas T D, Weimann N G and Eastman L F 1998 Appl. Phys. Lett. 73821
[23] Wang T, Saeki H, Bai J, Shirahama T, Lachab M, Sakai S and Eliseev P 2000 Appl. Phys. Lett. 761737
[24] Kaufmann U, Schlotter P, Obloh H, Kohler K and Maier M 2000 Phys. Rev. B 6210867
[25] Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 32760
[26] Sze S M 2007 Physics of Semiconductor Devices (3rd Edn.) (Hoboken:Wiley-Interscience)
[27] Sun C K, Vallee F, Keller S, Bowers J E and DenBaars S P 1997 Appl. Phys. Lett. 702004
[1] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[2] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[3] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[4] Enhanced absorption process in the thin active region of GaAs based p-i-n structure
Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
[5] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[6] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[7] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[8] Optoelectronic properties of bottom gate-defined in-plane monolayer WSe2 p-n junction
Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Kuei-Lin Chiu(邱奎霖), Takashi Taniguchi, Xi-Feng Ren(任希锋), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(8): 087303.
[9] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[10] Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2017, 26(8): 087311.
[11] Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow
Bin Li(黎斌), Shan-Jin Huang(黄善津), Hai-Long Wang(王海龙), Hua-Long Wu(吴华龙), Zhi-Sheng Wu(吴志盛), Gang Wang(王钢), Hao Jiang(江灏). Chin. Phys. B, 2017, 26(8): 087307.
[12] Analysis of localization effect in blue-violet light emitting InGaN/GaN multiple quantum wells with different well widths
Xiang Li(李翔), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Wei Liu(刘炜), Xiao-Guang He(何晓光), Xiao-Jing Li(李晓静), Feng Liang(梁锋), Jian-Ping Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同), Heng Long(龙衡), Mo Li(李沫). Chin. Phys. B, 2017, 26(1): 017805.
[13] Carrier transport in III-V quantum-dot structures for solar cells or photodetectors
Wenqi Wang(王文奇), Lu Wang(王禄), Yang Jiang(江洋), Ziguang Ma(马紫光), Ling Sun(孙令), Jie Liu(刘洁), Qingling Sun(孙庆灵), Bin Zhao(赵斌), Wenxin Wang(王文新), Wuming Liu(刘伍明), Haiqiang Jia(贾海强), Hong Chen(陈弘). Chin. Phys. B, 2016, 25(9): 097307.
[14] Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells
E Ben Salem, R Chaabani, S Jaziri. Chin. Phys. B, 2016, 25(9): 098101.
[15] Exciton-phonon interaction in Al0.4Ga0.6N/Al0.53Ga0.47N multiple quantum wells
Ya-Li Liu(刘雅丽), Peng Jin(金鹏), Gui-Peng Liu(刘贵鹏), Wei-Ying Wang(王维颖), Zhi-Qiang Qi(齐志强), Chang-Qing Chen(陈长清), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 087801.
No Suggested Reading articles found!