CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles calculation of the structural,electronic,and magnetic properties of cubic perovskite RbXF3(X=Mn,V,Co,Fe) |
Muhammad Raza ur rehman Hashmi1, Muhammad Zafar1, M Shakil2, Atif Sattar1, Shabbir Ahmed1, S A Ahmad1 |
1 Simulation Laboratory, Department of Physics, The Islamia University of Bahawalpur, 63100, Pakistan; 2 Department of Physics, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan |
|
|
Abstract First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction (GGA+U) within the framework of spin polarized density functional theory (DFT+U) are used to study the structural, electronic, and magnetic properties of cubic perovskite compounds RbXF3 (X=Mn, V, Co, and Fe). It is found that the calculated structural parameters, i.e., lattice constant, bulk modulus, and its pressure derivative are in good agreement with the previous results. Our results reveal that the strong spin polarization of the 3d states of the X atoms is the origin of ferromagnetism in RbXF3. Cohesive energies and the magnetic moments of RbXF3 have also been calculated. The calculated electronic properties show the half-metallic nature of RbCoF3 and RbFeF3, making these materials suitable for spintronic applications.
|
Received: 19 May 2016
Revised: 01 July 2016
Accepted manuscript online:
|
PACS:
|
74.20.Pq
|
(Electronic structure calculations)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Corresponding Authors:
Muhammad Raza ur rehman Hashmi
E-mail: phd.razahashmi@iub.edu.pk
|
Cite this article:
Muhammad Raza ur rehman Hashmi, Muhammad Zafar, M Shakil, Atif Sattar, Shabbir Ahmed, S A Ahmad First-principles calculation of the structural,electronic,and magnetic properties of cubic perovskite RbXF3(X=Mn,V,Co,Fe) 2016 Chin. Phys. B 25 117401
|
[1] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[2] |
Pickett W E and Moodera J S 2001 Phys. Today 54 39
|
[3] |
Cheng J and Yang Z Q 2006 Phys. Status Solidi Basic Res. 243 1151
|
[4] |
Sarma D D, Mahadevan P, Saha-Dasgupta T, Ray S and Kumar A 2000 Phys. Rev. Lett. 85 2549
|
[5] |
Itoh H, Ohsawa T and Inoue J 2000 Phys. Rev. Lett. 84 2501
|
[6] |
Bonilla C M, é Landínez Téllez D A, Arbey Rodríguez J, Vera Lòpez E and Roa-Rojas J 2007 Physica B 398 208
|
[7] |
Schwarz K 1986 J. Phys. F:Met. Phys. 16 L211
|
[8] |
Samantaray C B, Sim H and Hwang H 2005 Microelectronics J. 36 725
|
[9] |
Samantaray C B, Sim H and Hwang H 2004 Physica B 351 158
|
[10] |
Bednorz J G and Muller K A 1984 Phys. Rev. Lett. 52 2289
|
[11] |
Frederikse H P R, Thurber W R and Hosler W R 1964 Phys. Rev. 134 442
|
[12] |
Millis A J, Shraiman B I and Mueller R 1996 Phys. Rev. Lett. 77 175
|
[13] |
Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
|
[14] |
Chan T S, Liu R S, Guo G Y, Hu S F, Lin J G, Lee J F, Jang L Y, Chang C R and Huang C Y 2004 Solid State Commun. 131 531
|
[15] |
Zhang Y, Ji V and Xu K W 2012 Physica B 407 2617
|
[16] |
Jeng H T and Guo G Y 2003 Phys. Rev. B 67 094438
|
[17] |
Abbad A, Benstaali W, Bentounes H A, Bentata S and Benmalem Y 2016 Solid State Commun. 228 36
|
[18] |
Musa Saad M 2012 Solid State Commun. 152 1230
|
[19] |
Maria J, Nazir S, Alay-e-Abbas S M and Shaukat A 2014 J. Magn. Magn. Mater. 368 230
|
[20] |
Monir M E A, Baltache H, Murtaza G, Khenata R, Ahmed W K, Bouhemadou A, Omran S Bin and Seddik T 2015 J. Magn. Magn. Mater. 374 50
|
[21] |
Berri S 2015 J. Magn. Magn. Mater. 385 124
|
[22] |
Bouadjemi B, Bentata S, Abbad A, Benstaali W and Bouhafs B 2013 Solid State Commun. 168 6
|
[23] |
Sahnoun M, Zbiri M, Daul C, Khenata R, Baltache H and Driz M 2005 Mater. Chem. Phys. 91 185
|
[24] |
Yakobson G G and Akhmetova N E 1983 Synthesis 1983 169
|
[25] |
Kohn W and Sham L J 1965 Phys. Rev. B 140 1133
|
[26] |
Andersen O K 1975 Phys. Rev. B 12 3060
|
[27] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties
|
[28] |
Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
|
[29] |
Lichtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
|
[30] |
Lichtenstein V I A 1997 J. Phys.:Condens. Matter 9 767
|
[31] |
Jiang X and Guo G Y 2004 Phys. Rev. B 70 035110
|
[32] |
Solovyev I V, Dederichs P H and Anisimov V I 1994 Phys. Rev. B 50 16861
|
[33] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[34] |
Moreira R L and Dias A 2007 J. Phys. Chem. Solids 68 1617
|
[35] |
Jaffe J, Snyder J, Lin Z and Hess A 2000 Phys. Rev. B 62 1660
|
[36] |
Ubic R 2007 J. Am. Ceram. Soc. 90 3326
|
[37] |
Verma A S and Kumar A 2012 J. Alloys Compd. 541 210
|
[38] |
Jiang L Q, Guo J K, Liu H B, Zhu M, Zhou X, Wu P and Li C H 2006 J. Phys. Chem. Soli. 67 1531
|
[39] |
Sahu B R 1997 Mater. Sci. Eng. B 49 74
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|