CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Localized deep levels in AlxGa1-xN epitaxial films with various Al compositions |
Shi Li-Yang (时俪洋)a, Shen Bo (沈波)a, Yan Jian-Chang (闫建昌)b, Wang Jun-Xi (王军喜)b, Wang Ping (王平)a |
a State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
b R&D Center for Semiconductor Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract By using high-temperature deep-level transient spectroscopy (HT-DLTS) and other electrical measurement techniques, localized deep levels in n-type AlxGa1-xN epitaxial films with various Al compositions (x= 0, 0.14, 0.24, 0.33, and 0.43) have been investigated. It is found that there are three distinct deep levels in AlxGa1-xN films, whose level position with respect to the conduction band increases as Al composition increases. The dominant defect level with the activation energy deeper than 1.0 eV below the conduction band closely follows the Fermi level stabilization energy, indicating that its origin may be related to the defect complex, including the anti-site defects and divacancies in AlxGa1-xN films.
|
Received: 11 April 2014
Revised: 27 May 2014
Accepted manuscript online:
|
PACS:
|
61.66.Dk
|
(Alloys )
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
61.72.J-
|
(Point defects and defect clusters)
|
|
61.72.jd
|
(Vacancies)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB619300) and the National Natural Science Foundation of China (Grant Nos. 11174008 and 61361166007). |
Corresponding Authors:
Shen Bo
E-mail: bshen@pku.edu.cn
|
Cite this article:
Shi Li-Yang (时俪洋), Shen Bo (沈波), Yan Jian-Chang (闫建昌), Wang Jun-Xi (王军喜), Wang Ping (王平) Localized deep levels in AlxGa1-xN epitaxial films with various Al compositions 2014 Chin. Phys. B 23 116102
|
[1] |
Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
|
[2] |
Rumyantsev S L, Pala N, Shur M S, Gaska R, Levinshtein M E, Adivarahan V, Yang J, Simin G and Asif K M 2001 Appl. Phys. Lett. 79 866
|
[3] |
Park Y S, Park C J, Park C M, Na J H, Oh J S, Yoon I T, Cho H Y, Kang T W and Oh J E 2005 Appl. Phys. Lett. 86 152109
|
[4] |
Özdemir A F, Turut A and Kokce A 2003 Thin Solid Films 425 210
|
[5] |
Nam K B, Nakarmi M L, Lin J Y and Jiang H X 2005 Appl. Phys. Lett. 86 222108
|
[6] |
Nepal N, Nakarmi M L, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 89 092107
|
[7] |
Sun Q, Wang H, Jiang D S, Jin R Q, Huang Y, Zhang S M, Yang H, Jahn U and Ploog K H 2006 J. Appl. Phys. 100 123101
|
[8] |
Arehart A R, Allerman A A and Ringel S A 2011 J. Appl. Phys. 109 114506
|
[9] |
Götz W, Johnson N M, Bremser M D and Davis R F 1996 Appl. Phys. Lett. 69 2379
|
[10] |
Ooyama K, Sugawara K, Okuzaki S, Taketomi H, Miyake H, Hiramatsu K and Hashizume T 2010 Jpn. J. Appl. Phys. 49 101001
|
[11] |
Qiao D, Yu L S, Lau S S, Redwing J M, Lin J Y and Jiang H X 2000 J. Appl. Phys. 87 801
|
[12] |
Hashizume T, Kotani J and Hasegawa H 2004 Appl. Phys. Lett. 84 4884
|
[13] |
Meneghini M, Bertin M, Stocco A, Santo G D, Marcon D, Malinowski P E, Chini A, Meneghesso G and Zanoni E 2013 Appl. Phys. Lett. 102 163501
|
[14] |
Shi L Y, Shen B, Lu L W, Yan J C, Wang J X and Wang P 2014 Chin. Phys. B (In Press)
|
[15] |
Hwang J, Schaff W J, Eastman L F, Bradley S T, Brillson L J, Look D C, Wu J, Walukiewicz W, Furis M and Cartwright A N 2002 Appl. Phys. Lett. 81 5192
|
[16] |
Götz W, Johnson N M, Amano H and Akasaki I 1994 Appl. Phys. Lett. 65 463
|
[17] |
Hacke P, Detchprohm T, Hiramatsu K, Sawaki N, Tadatomo K and Miyake K 1994 J. Appl. Phys. 76 304
|
[18] |
Haase D, Schmid M, Kuürner W, Dörnen A, Härle V, Scholz F, Burkard M and Schweizer H 1996 Appl. Phys. Lett. 69 2525
|
[19] |
Lee W I, Huang T C, Guo J D and Feng M S 1995 Appl. Phys. Lett. 67 1721
|
[20] |
Cho H K, Kim K S, Hong C H and Lee H J 2001 J. Cryst. Growth 223 38
|
[21] |
Fang Z Q, Hemsky J W, Look D C and Mack M P 1998 Appl. Phys. Lett. 72 448
|
[22] |
Chen S, Honda U, Shibata T, Matsumura T, Tokuda Y, Ishikawa K, Hori M, Ueda H, Uesugi T and Kachi T 2012 J. Appl. Phys. 112 053513
|
[23] |
Fang Z Q, Look D C, Jasinski J, Benamara M, Weber Z L and Molnar R J 2001 Appl. Phys. Lett. 78 332
|
[24] |
Polyakov A Y, Smirnov N B, Govorkov N V and Redwing J M 1998 Solid-Sate Electron. 42 831
|
[25] |
Muret P, Philippe A, Monroy E, Munoz E, Beaumont B, Omnes F and Gibart P 2001 Mater. Sci. Eng. B 82 91
|
[26] |
Ito T, Yoshikawa M and Egawa T 2008 Phys. Stat. Solid C 5 2998
|
[27] |
Fang Z Q, Look D C, Kim D H and Adesida I 2005 Appl. Phys. Lett. 87 182115
|
[28] |
Götz W, Johnson N M, Bremser M D and Davis R F 1996 Appl. Phys. Lett. 69 2379
|
[29] |
Osaka J, Ohno Y, Kishimoto S, Maezawa K and Hizutani T 2005 Appl. Phys. Lett. 87 222112
|
[30] |
Uedono A, Ishibashi S, Keller S, Moe C, Cantu P, Katona T M, Kamber D S, Wu Y, Letts E, Newman S A, Nakamura S, Speck J S, Mishra U K, DenBaars S P, Onuma T and Chichibu S F 2009 J. Appl. Phys. 105 054501
|
[31] |
Bruner D, Angerer H, Bustarret E, Freudenberg F, Dimitrov R, Amabacher O and Stutzmann M 1997 J. Appl. Phys. 82 5090
|
[32] |
Nikishin S A, Faleev N N, Zubrilov A S, Antipov V G and Temkin H 2000 Appl. Phys. Lett. 76 3028
|
[33] |
Holtz M, Prokofyeva T, Seon M, Copeland K, Vanbuskirk J, Willians S, Nikishin S A, Tretyakov V, and Temkin H 2001 J. Appl. Phys. 89 7977
|
[34] |
Walukiewicz W, Li S X, Wu J, Yu K M, Ager Ⅲ J M, Haller E E, Lu H and Schaff W J 2004 J. Cryst. Gowth 269 119
|
[35] |
Walukiewicz W 1987 J. Vac. Sci. Technol. B 5 1062
|
[36] |
Walukiewicz W 1988 J. Vac. Sci. Technol. B 6 1257
|
[37] |
Janotti A and van de Wall C G 2005 Appl. Phys. Lett. 87 122102
|
[38] |
Walle C G V, Stampfl C and Neugebauer J 1998 J. Cryst.Growth 189-190 505
|
[39] |
Onuma T, Chichibu S F, Uedono A, Sota T, Cantu P, Katona T M, Keading J F, Keller S, Mishra U K, Nakamura S and Denbarrs S P 2004 J. Appl. Phys. 95 2495
|
[40] |
Zhou H B and Jin S 2013 Chin. Phys. B 22 076104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|