Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 116101    DOI: 10.1088/1674-1056/25/11/116101
RAPID COMMUNICATION Prev   Next  

Transport coefficients and mechanical response in hard-disk colloidal suspensions

Bo-Kai Zhang(张博凯)1, Jian Li(李健)3, Kang Chen(陈康)2, Wen-De Tian(田文得)2, Yu-Qiang Ma(马余强)1,2
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China;
3 Department of Physics, Nanjing Normal University, Nanjing 210023, China
Abstract  

We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks.

Keywords:  soft matter      colloidal suspensions      glass transition      rheology  
Received:  14 June 2016      Revised:  22 July 2016      Accepted manuscript online: 
PACS:  61.43.Fs (Glasses)  
  64.70.kj (Glasses)  
  64.70.pv (Colloids)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and 21574096).

Corresponding Authors:  Bo-Kai Zhang     E-mail:  bkzhang@smail.nju.edu.cn

Cite this article: 

Bo-Kai Zhang(张博凯), Jian Li(李健), Kang Chen(陈康), Wen-De Tian(田文得), Yu-Qiang Ma(马余强) Transport coefficients and mechanical response in hard-disk colloidal suspensions 2016 Chin. Phys. B 25 116101

[1] Faupel F, Frank W, Macht M P, Mehrer H, Naundorf V, Rätzke K, Schober H R, Sharma S K and Teichler H 2003 Rev. Mod. Phys. 75 237
[2] Larson R G 1999 The Structure and Rheology of Complex Fluids (New York:Oxford University Press)
[3] Ashcroft N W and Mermin N D 2005 Solid State Physics (New York:Holt, Rinehart and Winston)
[4] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[5] Saltzman E J and Schweizer K S 2003 J. Chem. Phys. 119 1197
[6] Dyre J C 1987 Phys. Rev. Lett. 58 792
[7] Arkhipov V and Bässler H 1995 Phys. Rev. E 52 1227
[8] Bouchaud J P, Cugliandolo L, Kurchan J and Mézard M 1996 Physica A 226 243
[9] Monthus C and Bouchaud J P 1996 J. Phys. A:Math. Gen. 29 3847
[10] Berthier L 2003 J. Phys:Condens. Matter 15 S933
[11] Fuchs M and Cates M E 2002 Phys. Rev. Lett. 89 248304
[12] Cates M E, Fuchs M, Kroy K, Poon W C and Puertas A M 2004 J. Phys:Condens. Matter 16 S4861
[13] Konig H, Hund R, Zahn K and Maret G 2005 Eur. Phys. J. E 18 287
[14] Ebert F, Keim P and Maret G 2008 Eur. Phys. J. E 26 161
[15] Mazoyer S, Ebert F, Maret G and Keim P 2009 Europhysics. Lett. 88 66004
[16] Klix C L, Ebert F, Weysser F, Fuchs M, Maret G and Keim P 2012 Phys. Rev. Lett. 109 178301
[17] Bayer M, Brader J M, Ebert F, Fuchs M, Lange E, Maret G, Schilling R, Sperl M and Wittmer J P 2007 Phys. Rev. E 76 011508
[18] Henrich O, Weysser F, Cates M E and Fuchs M 2009 Philos. Mag. R. Soc. London 367 5033
[19] Seyboldt R, Hajnal D, Weysser F and Fuchs M 2012 Soft Matter 8 4132
[20] Schweizer K S and Saltzman E J 2003 J. Chem. Phys. 119 1181
[21] Schweizer K S 2005 J. Chem. Phys. 123 244501
[22] Mirigian S and Schweizer K S 2013 J. Phys. Chem. Lett. 4 3648
[23] Mirigian S and Schweizer K S 2014 J. Chem. Phys. 140 194506
[24] Mirigian S and Schweizer K S 2014 J. Chem. Phys. 140 194507
[25] Dell Z E and Schweizer K S 2015 Phys. Rev. Lett. 115 205702
[26] Chen K and Schweizer K S 2007 Europhys. Lett. 79 26006
[27] Chen K and Schweizer K S 2009 Phys. Rev. Lett. 102 038301
[28] Kobelev V and Schweizer K S 2005 J. Chem. Phys. 123 164902
[29] Kobelev V and Schweizer K S 2007 Phys. Rev. E 71 021401
[30] Zhang B K, Li H S, Tian W D, Chen K and Ma Y Q 2014 J. Chem. Phys. 140 094506
[31] Zwanzig R 2001 Nonequilibrium Statistical Mechanics (New York:Oxford University Press)
[32] Verberg R, Schepper D I and Cohen E 1997 Phys. Rev. E 55 3143
[33] Cohen E, Verberg R and Schepper D I 1998 Physica A 251 251
[34] Hansen J P and McDonald I R 1990 Theory of Simple Liquids (Amsterdam:Elsevier)
[35] Wu J and Li Z 2007 Annu. Rev. Phys. Chem. 58 85
[36] Guo X and Riebel U 2006 J. Chem. Phys. 125 144504
[37] Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys. 62 251
[38] Eyring H 1936 J. Chem. Phys. 4 283
[39] Gotze W 2008 Complex Dynamics of Glass-forming Liquids (New York:Oxford University Press)
[1] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[2] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[3] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[4] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[5] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
[6] Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials
Lan-Ying Zhang(张兰英), Yan-Zi Gao(高延子), Ping Song(宋平), Xiao-Juan Wu(武晓娟), Xiao Yuan(苑晓), Bao-Feng He(何宝凤), Xing-Wu Chen(陈兴武), Wang Hu(胡望), Ren-Wei Guo(郭仁炜), Hang-Jun Ding(丁杭军), Jiu-Mei Xiao(肖久梅), Huai Yang(杨槐). Chin. Phys. B, 2016, 25(9): 096101.
[7] Recrystallization of freezable bound water in aqueous solutions of medium concentrations
Lishan Zhao(赵立山), Liqing Pan(潘礼庆), Ailing Ji(纪爱玲), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2016, 25(7): 075101.
[8] Skin formation in drying a film of soft matter solutions: Application of solute based Lagrangian scheme
Ling Luo(罗凌), Fanlong Meng(孟凡龙), Junying Zhang(张俊英), Masao Doi. Chin. Phys. B, 2016, 25(7): 076801.
[9] Can secondary nucleation exist in ice banding of freezing colloidal suspensions?
Jia-Xue You(游家学), Jin-Cheng Wang(王锦程), Li-Lin Wang(王理林), Zhi-Jun Wang(王志军), Jun-Jie Li(李俊杰), Xin Lin(林鑫). Chin. Phys. B, 2016, 25(12): 128202.
[10] Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films
Ali Badawi, N. Al-Hosiny. Chin. Phys. B, 2015, 24(10): 105101.
[11] Sub-diffusive scaling with power-law trapping times
Luo Liang (罗亮), Tang Lei-Han (汤雷翰). Chin. Phys. B, 2014, 23(7): 070514.
[12] A dynamic rheological model for thin-film lubrication
Zhang Xiang-Jun (张向军), Huang Ying (黄颖), Guo Yan-Bao (郭岩宝), Tian Yu (田煜), Meng Yong-Gang (孟永钢). Chin. Phys. B, 2013, 22(1): 016202.
[13] Liquid to glass transition of tetrahydrofuran and 2-methyltetrahydrofuran
Tan Rong-Ri (谈荣日), Shen Xin (沈鑫), Hu Lin (胡林), Zhang Feng-Shou (张丰收 ). Chin. Phys. B, 2012, 21(8): 086402.
[14] Simulations of the flipping images and microparameters of molecular orientations in liquids according to molecule string model
Wang Li-Na (王丽娜), Zhao Xing-Yu (赵兴宇), Zhang Li-Li (张丽丽), Huang Yi-Neng (黄以能 ). Chin. Phys. B, 2012, 21(8): 086403.
[15] Solving the initial condition of the string relaxation equation of the string model for glass transition: part-II
Zhang Jin-Lu(张晋鲁), Wang Li-Na(王丽娜), Zhao Xing-Yu(赵兴宇), Zhang Li-Li(张丽丽), Zhou Heng-Wei(周恒为), Wei Lai(卫来), and Huang Yi-Neng(黄以能) vgluept . Chin. Phys. B, 2011, 20(2): 026401.
No Suggested Reading articles found!