Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 116107    DOI: 10.1088/1674-1056/ab4cdc
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of oxygen adsorbed on Au-doped RuO2 (110) surface

Ji Zhang(张季)1, De-Ming Zhang(张德明)1,2
1 An Hui Xin Hua University, Hefei 230088, China;
2 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Density functional theory calculations are carried out to identify various configurations of oxygen molecules adsorbed on the Au-doped RuO2 (110) surface. The binding energy calculations indicate that O2 molecules are chemically adsorbed on the coordinatively unsaturated Ru (Rucus) sites and the bridge oxygen vacancies on the Au sites. Transition state calculations show that O* can exist on the Rucus site by O2* dissociation and diffusion. The calculations of the reaction path of CO indicate that the reaction energy barrier of CO adsorbed on Au with lattice oxygen decreases to 0.28 eV and requires less energy than that on the undoped structure.
Keywords:  CO      metal oxides      density functional theory      ruthenium oxide      O2 adsoption  
Received:  23 August 2019      Revised:  08 October 2019      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  61.72.J- (Point defects and defect clusters)  
  61.72.Bb (Theories and models of crystal defects)  
  61.72.uj (III-V and II-VI semiconductors)  
Fund: Project supported by the Natural Science Foundation of Anhui Province, China (Grant Nos. KJ2018A0588 and KJ2019A0879).
Corresponding Authors:  Ji Zhang     E-mail:  coolfall123@126.com

Cite this article: 

Ji Zhang(张季), De-Ming Zhang(张德明) First-principles study of oxygen adsorbed on Au-doped RuO2 (110) surface 2019 Chin. Phys. B 28 116107

[1] Henrich V E and Cox P A 1994 The Surface Science of Metal Oxides (Cambridge:Cambridge University Press)
[2] Noguera C 1994 Physics and Chamistry at Oxide Surfaces Science (Cambridge:Cambridge University Press)
[3] Over H, Kim Y C, Seisonen A P, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A and Ertl G 2000 Science 287 1474
[4] Fan C Y, Wang J, Jacobi K and Ertl G 2001 J. Chem. Phys. 114 10058
[5] Wang J, Fan C Y, Jacobi K and Ertl G 2001 Surf. Sci. 481 113
[6] Stampfl C, Schwegmann S, Over H, Scheffler M and Ertl G 1996 Phys. Rev. Lett. 77 3371
[7] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[8] Assmann J, Narkhede V, A Breuer N, Muhler M, Seitsonen A P, Knapp M, Crihan D, Farkas A, Mellau G and Over H 2008 J. Phys. Condens. Matter. 20 184017
[9] Ertl G, Kno H and Weitkamp J 1997 Handbook of Hetero-geneous Catalysis (New York:Wiley)
[10] van Santen R and Neurock M 2006 Molecular Heterogeneous Catalysis (Weinheim:Wiley-VCH)
[11] Kim Y D, Seitsonen A P, Wendt S, Wang J, Fan C, Jacobi K, Over H and Ertl G 2001 J. Phys. Chem. B 105 3752
[12] Rössler M, Günther S and Wintterlin J 2007 J. Phys. Chem. C 111 2242
[13] Shapovalov V and Metiu H 2007 J. Catal. 245 205
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clarck S J and Payne M C 2002 J. Phys.:Condens. Matter 14 2717
[16] Wang H, Schneider W and Schnidt D 2009 J. Phys. Chem. C 113 15266
[17] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[18] Henkelman G and Jónsson H 2000 Chem. Phys. 113 9978
[19] Yang Z, Woo T K and Hermansson K 2004 Chem. Phys. Lett. 396 384
[20] Sun Q, Rarsten K and Scheffler M 2004 Phys. Rev. B 70 235402
[21] Boman C E 1970 Acta Chem. Scand. 24 116
[22] O'Grady W E, Atanasoska L, Pollak F H and Park H L 1984 J. Electroanal. Chem. 178 61
[23] Hong S and Rahman T S 2007 J. Phys. Chem. C 111 12361
[24] Huber K P and Herzherg G 1079 Molecular Spectra and Molecular Structure IV. Constants of Diatomic:Molicules (New York:Van Nostrand Reinhold)
[25] Kung H 1989 Transitition Metal Oxides:Surface Chemistry and Catalysis (New York:Elsevier)
[26] Reuter K and Scheffler M 2003 Phys. Rev. Lett. 90 046103
[27] Wang Y, Lafosse A and Jacobi K 2002 J. Phys. Chem. B 106 5476
[28] Wang J, Fan C Y, Jacobi K and Ertl G 2002 J. Chem. Phys. B 106 3422
[29] Reuter K and Scheffler M 2003 Phys. Rev. Lett. 90 046103
[30] Reuter K, Frenkl D and Scheffler M 2004 Phys. Rev. Lett. 93 116105
[31] Wendt S, Seitsonen A P and Over H 2003 Catal. Today 85 167
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[5] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[6] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[7] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[8] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[9] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[10] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[11] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[12] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[13] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[14] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[15] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
No Suggested Reading articles found!