Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018102    DOI: 10.1088/1674-1056/25/1/018102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organicchemical vapor deposition

Ya-Chao Zhang(张雅超), Xiao-Wei Zhou(周小伟), Sheng-Rui Xu (许晟瑞), Da-Zheng Chen(陈大正), Zhi-Zhe Wang(王之哲), Xing Wang(汪星), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Yue Hao(郝跃)
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  

Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.

Keywords:  heterostructure      InGaN channel      pulsed metal organic chemical vapor deposition  
Received:  16 June 2015      Revised:  22 August 2015      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61306017, 61334002, 61474086, and 11435010) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61306017).

Corresponding Authors:  Jin-Cheng Zhang     E-mail:  jchzhang@xidian.edu.cn

Cite this article: 

Ya-Chao Zhang(张雅超), Xiao-Wei Zhou(周小伟), Sheng-Rui Xu (许晟瑞), Da-Zheng Chen(陈大正), Zhi-Zhe Wang(王之哲), Xing Wang(汪星), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organicchemical vapor deposition 2016 Chin. Phys. B 25 018102

[1] Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
[2] Mi M H, Zhang K, Zhao S L, Wang C, Zhang J C, Ma X H and Hao Y 2015 Chin. Phys. B 24 027303
[3] Cao M Y, Lu Y, Wei J X, Chen Y H, Li W J, Zheng J X, Ma X H and Hao Y 2014 Chin. Phys. B 23 087201
[4] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 IEEE Electron Device Lett. 31 195
[5] Simin G, Hu X, Tarakji A, Zhang J, Koudymov A, Saygi S, Yang J, Khan A, Shur M S and Gaska R 2001 Jpn. J. Appl. Phys. 40 L1142
[6] Chu R M, Zheng Y D, Zhou Y G, Gu S L, Shen B, Zhang R, Jiang R L, Han P and Shi Y 2003 Appl. Phys. A 77 669
[7] Okamoto N, Hoshino K, Hara N, Takikawa M and Arakawa Y 2004 J. Cryst. Growth 272 278
[8] Ager lll J W, Miller N, Jones R E, Yu K M, Wu J, Schaff W J and Walukiewicz W 2008 Phys. Status Solidi B 245 873
[9] Pala N, Rumyantsev S, Shur M, Gaska R, Hu X, Yang J, Simin G and Khan M A 2003 Solid-State Electron 47 1099
[10] Lanford W, Kumar V, Schwindt R, Kuliev A, Adesida I, Dabiran A M, Wowchak A M, Chow P P and Lee J W 2004 Electron. Lett. 40 771
[11] Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B and Cai S J 2015 Chin. Phys. B 24 048503
[12] Morkoc H 2008 Handbook of Nitride Semiconductors and Devices, Vol. 3, GaN-based Optical and Electronic Devices (New York: Wiley) p. 375
[13] Maeda N, Saitoh T, Tsubaki K, Nishida T and Kobayashi N 1999 Jpn. J. Appl. Phys. 38 L799
[14] Neuburger M, Daumiller I, Zimmermann T, Kunze M, Koley G, Spencer M G, Dadgar A, Krtschil A, Krost A and Kohn E 2003 Electron. Lett. 39 1614
[15] Hsin Y, Hsu H, Chuo C and Chyi J 2001 IEEE Electron Device Lett. 22 501
[16] Simin G, Koudymov A, Fatima H, Zhang J, Yang J, Khan M A, Hu X, Tarakji A, Gaska R and Shur M S 2002 IEEE Electron Device Lett. 23 458
[17] Adivarahan V, Gaevski M, Koudymov A, Yang J, Simin G and Khan M A 2007 IEEE Electron Device Lett. 28 192
[18] Sugita K, Tanaka M, Sasamoto K, Bhuiyan A G, Hashimoto A and Yamamoto A 2011 J. Cryst. Growth 318 505
[19] Wang Q, Ji Z W, Wang F, Mu Q, Zheng Y J, Xu X G, Lü Y J and Feng Z H 2015 Chin. Phys. B 24 024219
[20] Johnson M C, Konsek S L, Zettl A and Bourret-Courchesne E D 2004 J. Cryst. Growth 272 400
[21] Ruterana P, Aguinet R and Poisson M A 1999 Phys. Status Solidi B 216 663
[22] Ikki H, Isobe Y, Iida D, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H, Bandoh A and Udagawa T 2011 Phys. Status Solidi A 208 1614
[23] Gökden S, Tülek R, Teke A, Leach J H, Fan Q, Xie J, Özgür Ü, Morkoç H, Lisesivdin S B and Özbay E 2010 Semicond. Sci. Technol. 25 045024
[24] Beh K P, Yam F K, Chin C W, Tneh S S and Hassan Z 2010 J. Alloys Compd. 506 343
[25] Wang C X, Tsubaki K, Kobayashi N, Makimoto T and Maeda N 2004 Appl. Phys. Lett. 84 2313
[26] Xie J, Leach J H, Ni X, Wu M, Shimada R, Özgür Ü and Morkoç H 2007 Appl. Phys. Lett. 91 262102
[27] Laboutin O, Cao Y, Johnson W, Wang R and Li G 2012 Appl. Phys. Lett. 100 121909
[28] Romano L T, Krusor B S, McCluskey M D, Bour D P and Nauka K 1998 Appl. Phys. Lett. 73 1757
[29] Yu T H and Brennan K F 2001 J. Appl. Phys. 89 3827
[1] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[2] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[7] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[10] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[11] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[12] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[15] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
No Suggested Reading articles found!