Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014601    DOI: 10.1088/1674-1056/25/1/014601
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Mechanics of high-capacity electrodes in lithium-ion batteries

Ting Zhu
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Abstract  

Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research.

Keywords:  lithium-ion batteries      mechanics      electrochemistry      silicon  
Received:  15 August 2015      Revised:  14 November 2015      Accepted manuscript online: 
PACS:  46.50.+a (Fracture mechanics, fatigue and cracks)  
  62.20.-x (Mechanical properties of solids)  
  82.45.Fk (Electrodes)  
Fund: 

Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

Corresponding Authors:  Ting Zhu     E-mail:  ting.zhu@me.gatech.edu

Cite this article: 

Ting Zhu Mechanics of high-capacity electrodes in lithium-ion batteries 2016 Chin. Phys. B 25 014601

[1] Tarascon J M and Armand M 2001 Nature 414 359
[2] Dunn B, Kamath H and Tarascon J M 2011 Science 334 928
[3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[4] Huggins R A and Nix W D 2000 Ionics 6 57
[5] Beaulieu LY, Eberman K W, Turner R L, Krause L J and Dahn J R 2001 Electrochem. Solid State Lett. 4 A137
[6] Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotech. 3 31
[7] Cheng Y T and Verbrugge M W 2009 J. Power Sources 190 453
[8] Zhao K, Pharr M, Vlassak J J and Suo Z 2010 J. Appl. Phys. 108 073517
[9] Sethuraman V A, Chon M J, Shimshak M, Srinivasan V and Guduru P R 2010 J. Power Sources 195 5062
[10] Liu X H, Wang J W, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh S A, Davydov A V, Mao S X, Picraux S T, Zhang S, Li J, Zhu T and Huang J Y 2012 Nat. Nanotech. 7 749
[11] Cui Z, Gao F and Qu J 2012 J. Mech. Phys. Solid. 60 1280
[12] Gao Y F and Zhou M 2011 J. Appl. Phys. 109 014310
[13] Purkayastha R and McMeeking R M 2012 J. Appl. Mech.-Trans. ASME 79 031021
[14] Li H, Huang X J, Chen L Q, Wu Z G and Liang Y 1999 Electrochem. Solid State Lett. 2 547
[15] Liu X H, Zheng H, Zhong L, Huang S, Karki K, Zhang L Q, Liu Y, Kushima A, Liang W T, Wang J W, Cho J H, Epstein E, Dayeh S A, Picraux S T, Zhu T, Li J, Sullivan J P, Cumings J, Wang C, Mao S X, Ye Z Z, Zhang S and Huang J Y 2011 Nano Lett. 11 3312
[16] Chon M J, Sethuraman V A, McCormick A, Srinivasan V and Guduru P R 2011 Phys. Rev. Lett. 107 045503
[17] Liu X H, Zhong L, Huang S, Mao S X, Zhu T and Huang J Y 2012 ACS Nano 6 1522
[18] Wang J W, He Y, Fan F, Liu X H, Xia S, Liu Y, Harris C T, Li H, Huang J Y, Mao S X and Zhu T 2013 Nano Lett. 13 709
[19] McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C, Nix W D and Cui Y 2013 Nano Lett. 13 758
[20] McDowell M T, Lee S W, Nix W D and Cui Y 2013 Adv. Mater. 25 4966
[21] Woodford W H, Chiang Y M and Carter W C 2010 J. Electrochem. Soc. 157 A1052
[22] Haftbaradaran H, Xiao X C, Verbrugge M W and Gao H J 2012 J. Power Sources 206 357
[23] Wang H, Hou B, Wang X, Xia S and Chew H B 2015 Nano Lett. 15 1716
[24] Trattnig G and Leitgeb W 2014 Battery Modelling for Crash Safety Simulation In Automotive Battery Technology (ed. Thaler A and Watzenig D) p. 19
[25] Liu X H, Liu Y, Kushima A, Zhang S L, Zhu T, Li J and Huang J Y 2012 Adv. Energy Mater. 2 722
[26] Liu Y, Zhang S and Zhu T 2014 Chemelectrochem. 1 706
[27] Yan B, Lim C, Yin L and Zhu L 2012 J. Electrochem. Soc. 159 A1604
[28] Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L A, Kushima A and Li J 2010 Science 330 1515
[29] Liu Y, Zheng H, Liu X H, Huang S, Zhu T, Wang J W, Kushima A, Hudak N S, Huang X, Zhang S L, Mao S X, Qian X F, Li J and Huang J Y 2011 ACS Nano 5 7245
[30] Huang S, Fan F, Li J, Zhang S L and Zhu T 2013 Acta Materialia 61 4354
[31] Liu X H, Fan F, Yang H, Zhang S, Huang J Y and Zhu T 2013 ACS Nano 7 1495
[32] McDowell M T, Ryu I, Lee S W, Wang C, Nix W D and Cui Y 2012 Adv. Mater. 24 6034
[33] Gu M, Yang H, Perea D E, Zhang J G, Zhang S and Wang C M 2014 Nano Lett. 14 4622
[34] Hertzberg B, Benson J and Yushin G 2011 Electrochem. Commun. 13 818
[35] Soni S K, Sheldon B W, Xiao X C, Verbrugge M W, Ahn D, Haftbaradaran H and Gao H J 2012 J. Electrochem. Soc. 159 A38
[36] Kushima A, Huang J Y and Li J 2012 ACS Nano 6 9425
[37] Wang X, Fan F, Wang J, Wang H, Tao S, Yang A, Liu Y, Chew H B, Mao S X, Zhu T and Xia S 2015 Nat. Commun. 6 8417
[38] Boles S T, Thompson C V, Kraft O and Moenig R 2013 Appl. Phys. Lett. 103 263906
[39] Pharr M, Suo Z and Vlassak J J 2014 J. Power Sources 270 569
[40] Berla L A, Lee S W, Cui Y and Nix W D 2015 J. Power Sources 273 41
[41] Shenoy V B, Johari P and Qi Y 2010 J. Power Sources 195 6825
[42] Zhao K J, Tritsaris G A, Pharr M, Wang W L, Okeke O, Suo Z G, Vlassak J J and Kaxiras E 2012 Nano Lett. 12 4397
[43] Cui Z W, Gao F, Cui Z H and Qu J M 2012 J. Power Sources 207 150
[44] Fan F, Huang S, Yang H, Raju M, Datta D, Shenoy V B, van Duin A C T, Zhang S and Zhu T 2013 Modelling and Simulation in Materials Science and Engineering 21 074002
[45] Chevrier V L and Dahn J R 2009 J. Electrochem. Soc. 156 A454
[46] Chevrier V L and Dahn J R 2010 J. Electrochem. Soc. 157 A392
[47] Zhang Q F, Zhang W X, Wan W H, Cui Y and Wang E G 2010 Nano Lett. 10 3243
[48] Huang S and Zhu T 2011 J. Power Sources 196 3664
[49] Kim H, Chou C Y, Ekerdt J G and Hwang G S 2011 J. Phys. Chem. C 115 2514
[50] Johari P, Qi Y and Shenoy V B 2011 Nano Lett. 11 5494
[51] Zhao K J, Wang W L, Gregoire J, Pharr M, Suo Z G, Vlassak J J and Kaxiras E 2011 Nano Lett. 11 2962
[52] Chan M K Y, Wolverton C and Greeley J P 2012 J. Am. Chem. Soc. 134 14362
[53] Jung S C, Choi J W and Han Y K 2012 Nano Lett. 12 5342
[54] Argon A S and Demkowicz M J 2008 Metall. Mater. Trans. A 39A 1762
[55] Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
[56] Zheng J, Zheng H, Wang R, Ben L, Lu W, Chen L, Chen L and Li H 2014 Phys. Chem. Chem. Phys. 16 13229
[57] Zhang LQ, Liu X H, Liu Y, Huang S, Zhu T, Gui L J, Mao S X, Ye Z Z, Wang C M, Sullivan J P and Huang J Y 2011 ACS Nano 5 4800
[58] Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B and Cui Y 2012 Nat. Nanotech. 7 310
[59] Wu F, Lee J T, Fan F, Nitta N, Kim H, Zhu T and Yushin G 2015 Adv. Mater. 27 5579
[60] Jia Z and Li T 2015 J. Power Sources 275 866
[61] Gosele U and Tu K N 1982 J. Appl. Phys. 53 3252
[62] Gosele U and Tu K N 1989 J. Appl. Phys. 66 2619
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[7] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[8] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[9] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[10] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[11] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[12] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[15] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
No Suggested Reading articles found!