|
Abstract Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research.
|
Received: 15 August 2015
Revised: 14 November 2015
Accepted manuscript online:
|
PACS:
|
46.50.+a
|
(Fracture mechanics, fatigue and cracks)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
82.45.Fk
|
(Electrodes)
|
|
Fund: Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936). |
Corresponding Authors:
Ting Zhu
E-mail: ting.zhu@me.gatech.edu
|
Cite this article:
Ting Zhu Mechanics of high-capacity electrodes in lithium-ion batteries 2016 Chin. Phys. B 25 014601
|
[1] |
Tarascon J M and Armand M 2001 Nature 414 359
|
[2] |
Dunn B, Kamath H and Tarascon J M 2011 Science 334 928
|
[3] |
Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
|
[4] |
Huggins R A and Nix W D 2000 Ionics 6 57
|
[5] |
Beaulieu LY, Eberman K W, Turner R L, Krause L J and Dahn J R 2001 Electrochem. Solid State Lett. 4 A137
|
[6] |
Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotech. 3 31
|
[7] |
Cheng Y T and Verbrugge M W 2009 J. Power Sources 190 453
|
[8] |
Zhao K, Pharr M, Vlassak J J and Suo Z 2010 J. Appl. Phys. 108 073517
|
[9] |
Sethuraman V A, Chon M J, Shimshak M, Srinivasan V and Guduru P R 2010 J. Power Sources 195 5062
|
[10] |
Liu X H, Wang J W, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh S A, Davydov A V, Mao S X, Picraux S T, Zhang S, Li J, Zhu T and Huang J Y 2012 Nat. Nanotech. 7 749
|
[11] |
Cui Z, Gao F and Qu J 2012 J. Mech. Phys. Solid. 60 1280
|
[12] |
Gao Y F and Zhou M 2011 J. Appl. Phys. 109 014310
|
[13] |
Purkayastha R and McMeeking R M 2012 J. Appl. Mech.-Trans. ASME 79 031021
|
[14] |
Li H, Huang X J, Chen L Q, Wu Z G and Liang Y 1999 Electrochem. Solid State Lett. 2 547
|
[15] |
Liu X H, Zheng H, Zhong L, Huang S, Karki K, Zhang L Q, Liu Y, Kushima A, Liang W T, Wang J W, Cho J H, Epstein E, Dayeh S A, Picraux S T, Zhu T, Li J, Sullivan J P, Cumings J, Wang C, Mao S X, Ye Z Z, Zhang S and Huang J Y 2011 Nano Lett. 11 3312
|
[16] |
Chon M J, Sethuraman V A, McCormick A, Srinivasan V and Guduru P R 2011 Phys. Rev. Lett. 107 045503
|
[17] |
Liu X H, Zhong L, Huang S, Mao S X, Zhu T and Huang J Y 2012 ACS Nano 6 1522
|
[18] |
Wang J W, He Y, Fan F, Liu X H, Xia S, Liu Y, Harris C T, Li H, Huang J Y, Mao S X and Zhu T 2013 Nano Lett. 13 709
|
[19] |
McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C, Nix W D and Cui Y 2013 Nano Lett. 13 758
|
[20] |
McDowell M T, Lee S W, Nix W D and Cui Y 2013 Adv. Mater. 25 4966
|
[21] |
Woodford W H, Chiang Y M and Carter W C 2010 J. Electrochem. Soc. 157 A1052
|
[22] |
Haftbaradaran H, Xiao X C, Verbrugge M W and Gao H J 2012 J. Power Sources 206 357
|
[23] |
Wang H, Hou B, Wang X, Xia S and Chew H B 2015 Nano Lett. 15 1716
|
[24] |
Trattnig G and Leitgeb W 2014 Battery Modelling for Crash Safety Simulation In Automotive Battery Technology (ed. Thaler A and Watzenig D) p. 19
|
[25] |
Liu X H, Liu Y, Kushima A, Zhang S L, Zhu T, Li J and Huang J Y 2012 Adv. Energy Mater. 2 722
|
[26] |
Liu Y, Zhang S and Zhu T 2014 Chemelectrochem. 1 706
|
[27] |
Yan B, Lim C, Yin L and Zhu L 2012 J. Electrochem. Soc. 159 A1604
|
[28] |
Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L A, Kushima A and Li J 2010 Science 330 1515
|
[29] |
Liu Y, Zheng H, Liu X H, Huang S, Zhu T, Wang J W, Kushima A, Hudak N S, Huang X, Zhang S L, Mao S X, Qian X F, Li J and Huang J Y 2011 ACS Nano 5 7245
|
[30] |
Huang S, Fan F, Li J, Zhang S L and Zhu T 2013 Acta Materialia 61 4354
|
[31] |
Liu X H, Fan F, Yang H, Zhang S, Huang J Y and Zhu T 2013 ACS Nano 7 1495
|
[32] |
McDowell M T, Ryu I, Lee S W, Wang C, Nix W D and Cui Y 2012 Adv. Mater. 24 6034
|
[33] |
Gu M, Yang H, Perea D E, Zhang J G, Zhang S and Wang C M 2014 Nano Lett. 14 4622
|
[34] |
Hertzberg B, Benson J and Yushin G 2011 Electrochem. Commun. 13 818
|
[35] |
Soni S K, Sheldon B W, Xiao X C, Verbrugge M W, Ahn D, Haftbaradaran H and Gao H J 2012 J. Electrochem. Soc. 159 A38
|
[36] |
Kushima A, Huang J Y and Li J 2012 ACS Nano 6 9425
|
[37] |
Wang X, Fan F, Wang J, Wang H, Tao S, Yang A, Liu Y, Chew H B, Mao S X, Zhu T and Xia S 2015 Nat. Commun. 6 8417
|
[38] |
Boles S T, Thompson C V, Kraft O and Moenig R 2013 Appl. Phys. Lett. 103 263906
|
[39] |
Pharr M, Suo Z and Vlassak J J 2014 J. Power Sources 270 569
|
[40] |
Berla L A, Lee S W, Cui Y and Nix W D 2015 J. Power Sources 273 41
|
[41] |
Shenoy V B, Johari P and Qi Y 2010 J. Power Sources 195 6825
|
[42] |
Zhao K J, Tritsaris G A, Pharr M, Wang W L, Okeke O, Suo Z G, Vlassak J J and Kaxiras E 2012 Nano Lett. 12 4397
|
[43] |
Cui Z W, Gao F, Cui Z H and Qu J M 2012 J. Power Sources 207 150
|
[44] |
Fan F, Huang S, Yang H, Raju M, Datta D, Shenoy V B, van Duin A C T, Zhang S and Zhu T 2013 Modelling and Simulation in Materials Science and Engineering 21 074002
|
[45] |
Chevrier V L and Dahn J R 2009 J. Electrochem. Soc. 156 A454
|
[46] |
Chevrier V L and Dahn J R 2010 J. Electrochem. Soc. 157 A392
|
[47] |
Zhang Q F, Zhang W X, Wan W H, Cui Y and Wang E G 2010 Nano Lett. 10 3243
|
[48] |
Huang S and Zhu T 2011 J. Power Sources 196 3664
|
[49] |
Kim H, Chou C Y, Ekerdt J G and Hwang G S 2011 J. Phys. Chem. C 115 2514
|
[50] |
Johari P, Qi Y and Shenoy V B 2011 Nano Lett. 11 5494
|
[51] |
Zhao K J, Wang W L, Gregoire J, Pharr M, Suo Z G, Vlassak J J and Kaxiras E 2011 Nano Lett. 11 2962
|
[52] |
Chan M K Y, Wolverton C and Greeley J P 2012 J. Am. Chem. Soc. 134 14362
|
[53] |
Jung S C, Choi J W and Han Y K 2012 Nano Lett. 12 5342
|
[54] |
Argon A S and Demkowicz M J 2008 Metall. Mater. Trans. A 39A 1762
|
[55] |
Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
|
[56] |
Zheng J, Zheng H, Wang R, Ben L, Lu W, Chen L, Chen L and Li H 2014 Phys. Chem. Chem. Phys. 16 13229
|
[57] |
Zhang LQ, Liu X H, Liu Y, Huang S, Zhu T, Gui L J, Mao S X, Ye Z Z, Wang C M, Sullivan J P and Huang J Y 2011 ACS Nano 5 4800
|
[58] |
Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B and Cui Y 2012 Nat. Nanotech. 7 310
|
[59] |
Wu F, Lee J T, Fan F, Nitta N, Kim H, Zhu T and Yushin G 2015 Adv. Mater. 27 5579
|
[60] |
Jia Z and Li T 2015 J. Power Sources 275 866
|
[61] |
Gosele U and Tu K N 1982 J. Appl. Phys. 53 3252
|
[62] |
Gosele U and Tu K N 1989 J. Appl. Phys. 66 2619
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|