|
|
Passive decoy-state quantum key distribution for the weak coherent photon source with finite-length key |
Yuan Li(李源)1,2, Wansu Bao(鲍皖苏)1,2, Hongwei Li(李宏伟)1,2, Chun Zhou(周淳)1,2, Yang Wang(汪洋)1,2 |
1. Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China; 2. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Passive decoy-state quantum key distribution systems, proven to be more desirable than active ones in some scenarios, also have the problem of device imperfections like finite-length keys. In this paper, based on the WCP source which can be used for the passive decoy-state method, we obtain the expressions of single-photon error rates, single-photon counts, and phase error rates. According to the information of smooth min-entropy, we calculate the key generation rate under the condition of finite-length key. Key generation rates with different numbers of pulses are compared by numerical simulations. From the results, it can be seen that the passive decoy-state method can have good results if the total number of pulses reaches 1010. We also simulate the passive decoy-state method with different probabilities of choosing a pulse for parameter estimation when the number of pulses is fixed.
|
Received: 27 May 2015
Revised: 01 October 2015
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304397). |
Corresponding Authors:
Wansu Bao
E-mail: 2010thzz@sina.com
|
Cite this article:
Yuan Li(李源), Wansu Bao(鲍皖苏), Hongwei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋) Passive decoy-state quantum key distribution for the weak coherent photon source with finite-length key 2016 Chin. Phys. B 25 010305
|
[1] |
Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing Bangalore, India (New York: IEEE) pp. 175-179
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) Chaps. 2 and 12
|
[4] |
Lo H K and Chau H F 1990 Science 283 2050
|
[5] |
Shor P and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[6] |
Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
|
[7] |
Wang S, Chen W, Guo J F and Yin Z Q 2012 Opt. Lett. 37 1008
|
[8] |
Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photonics 7 378
|
[9] |
Wang J Y 2013 Nat. Photonics 7 387
|
[10] |
Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
|
[11] |
Li M, Treeviriyanupab P, Zhang C M, Yin Z Q, Chen W and Han Z F 2015 Chin. Phys. B 24 010302
|
[12] |
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lütkenhaus N and Peev N 2009 Rev. Mod. Phys. 81 1301
|
[13] |
Hwang W Y 2003 Phys. Rev. Lett. 91 057901
|
[14] |
Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
|
[15] |
Wang X B 2005 Phys. Rev. Lett. 94 230503
|
[16] |
Wang X B 2005 Phys. Rev. A 72 012322
|
[17] |
Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
|
[18] |
Acin A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
|
[19] |
Gisin N, Pironio S and Sangouard N 2010 Phys. Rev. Lett. 105 070501
|
[20] |
Pawlowski M and Brunner N 2011 Phys. Rev. A 84 010302
|
[21] |
Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
|
[22] |
Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
|
[23] |
Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
|
[24] |
Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
|
[25] |
Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y and Han Z F 2013 Phys. Rev. A 88 052333
|
[26] |
Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F 2014 Chin. Phys. Lett. 31 070302
|
[27] |
Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H and Liu Y 2014 Acta Phys. Sin 63 200304 (in Chinese)
|
[28] |
Dong C, Zhao S H, Dong Y, Zhao W H and Zhao J 2014 Acta Phys. Sin 63 170303 (in Chinese)
|
[29] |
Hayashi M 2007 Phys. Rev. A 76 012329
|
[30] |
Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 282 4162
|
[31] |
Song T T, Zhang J, Qin S J and Wen Q Y 2011 Quantum Inf. Comput. 11 374
|
[32] |
Somma R D and Hughes R J 2013 Phys. Rev. A 87 062330
|
[33] |
Scarani and Renner R 2008 Phys. Rev. Lett. 100 200501
|
[34] |
Tan Y G and Cai Q Y 2011 Internation Journal of Quantum Information 9 903
|
[35] |
Tan Y G and Cai Q Y 2010 Eur. Phys. J. D 56 449
|
[36] |
Zhou C, Bao W S, Li H W, Wang Y, Li Y, Yin Z Q, Chen W and Han Z F 2014 Phys. Rev. A 89 052328
|
[37] |
Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J A 1992 J. Cryptology 5 3
|
[38] |
Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
|
[39] |
Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
|
[40] |
Ma X and Lütkenhaus N 2008 New J. Phys. 10 073018
|
[41] |
Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305
|
[42] |
Adachi Y, Yamamoto T, Koashi M and Imoto N 2007 Phys. Rev. Lett. 99 180503
|
[43] |
Curty M, Morder T, Ma X and Lutkenhaus N 2009 Opt. Lett. 34 3238
|
[44] |
Curty M, Ma X, Qi B, and Moroder T 2010 Phys. Rev. A 81 022310
|
[45] |
Renner R 2008 Int. J. Quantum Inf. 6 1
|
[46] |
Muller-Quade J and Renner R 2009 New J. Phys. 11 085006
|
[47] |
Vitnov A, Dupuis F, Tomamichel M and Renner R 2013 IEEE Trans. Inf. Theory 59 2603
|
[48] |
Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commum. 3 634
|
[49] |
Mertz M, Kampermann H, Bratzik S and Bruss D 2013 Phys. Rev. A 87 012315
|
[50] |
Lim C C W, Curty M, Walenata F, Xu F and Zbinden H 2014 Phys. Rev. A 89 022307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|