Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010305    DOI: 10.1088/1674-1056/25/1/010305
GENERAL Prev   Next  

Passive decoy-state quantum key distribution for the weak coherent photon source with finite-length key

Yuan Li(李源)1,2, Wansu Bao(鲍皖苏)1,2, Hongwei Li(李宏伟)1,2, Chun Zhou(周淳)1,2, Yang Wang(汪洋)1,2
1. Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China;
2. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Passive decoy-state quantum key distribution systems, proven to be more desirable than active ones in some scenarios, also have the problem of device imperfections like finite-length keys. In this paper, based on the WCP source which can be used for the passive decoy-state method, we obtain the expressions of single-photon error rates, single-photon counts, and phase error rates. According to the information of smooth min-entropy, we calculate the key generation rate under the condition of finite-length key. Key generation rates with different numbers of pulses are compared by numerical simulations. From the results, it can be seen that the passive decoy-state method can have good results if the total number of pulses reaches 1010. We also simulate the passive decoy-state method with different probabilities of choosing a pulse for parameter estimation when the number of pulses is fixed.
Keywords:  quantum key distribution      passive decoy-state      finite-length key      weak coherent pulses  
Received:  27 May 2015      Revised:  01 October 2015      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304397).
Corresponding Authors:  Wansu Bao     E-mail:  2010thzz@sina.com

Cite this article: 

Yuan Li(李源), Wansu Bao(鲍皖苏), Hongwei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋) Passive decoy-state quantum key distribution for the weak coherent photon source with finite-length key 2016 Chin. Phys. B 25 010305

[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing Bangalore, India (New York: IEEE) pp. 175-179
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) Chaps. 2 and 12
[4] Lo H K and Chau H F 1990 Science 283 2050
[5] Shor P and Preskill J 2000 Phys. Rev. Lett. 85 441
[6] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[7] Wang S, Chen W, Guo J F and Yin Z Q 2012 Opt. Lett. 37 1008
[8] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photonics 7 378
[9] Wang J Y 2013 Nat. Photonics 7 387
[10] Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
[11] Li M, Treeviriyanupab P, Zhang C M, Yin Z Q, Chen W and Han Z F 2015 Chin. Phys. B 24 010302
[12] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lütkenhaus N and Peev N 2009 Rev. Mod. Phys. 81 1301
[13] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[14] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[15] Wang X B 2005 Phys. Rev. Lett. 94 230503
[16] Wang X B 2005 Phys. Rev. A 72 012322
[17] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[18] Acin A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[19] Gisin N, Pironio S and Sangouard N 2010 Phys. Rev. Lett. 105 070501
[20] Pawlowski M and Brunner N 2011 Phys. Rev. A 84 010302
[21] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[22] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[23] Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
[24] Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
[25] Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y and Han Z F 2013 Phys. Rev. A 88 052333
[26] Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F 2014 Chin. Phys. Lett. 31 070302
[27] Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H and Liu Y 2014 Acta Phys. Sin 63 200304 (in Chinese)
[28] Dong C, Zhao S H, Dong Y, Zhao W H and Zhao J 2014 Acta Phys. Sin 63 170303 (in Chinese)
[29] Hayashi M 2007 Phys. Rev. A 76 012329
[30] Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 282 4162
[31] Song T T, Zhang J, Qin S J and Wen Q Y 2011 Quantum Inf. Comput. 11 374
[32] Somma R D and Hughes R J 2013 Phys. Rev. A 87 062330
[33] Scarani and Renner R 2008 Phys. Rev. Lett. 100 200501
[34] Tan Y G and Cai Q Y 2011 Internation Journal of Quantum Information 9 903
[35] Tan Y G and Cai Q Y 2010 Eur. Phys. J. D 56 449
[36] Zhou C, Bao W S, Li H W, Wang Y, Li Y, Yin Z Q, Chen W and Han Z F 2014 Phys. Rev. A 89 052328
[37] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J A 1992 J. Cryptology 5 3
[38] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[39] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[40] Ma X and Lütkenhaus N 2008 New J. Phys. 10 073018
[41] Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305
[42] Adachi Y, Yamamoto T, Koashi M and Imoto N 2007 Phys. Rev. Lett. 99 180503
[43] Curty M, Morder T, Ma X and Lutkenhaus N 2009 Opt. Lett. 34 3238
[44] Curty M, Ma X, Qi B, and Moroder T 2010 Phys. Rev. A 81 022310
[45] Renner R 2008 Int. J. Quantum Inf. 6 1
[46] Muller-Quade J and Renner R 2009 New J. Phys. 11 085006
[47] Vitnov A, Dupuis F, Tomamichel M and Renner R 2013 IEEE Trans. Inf. Theory 59 2603
[48] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commum. 3 634
[49] Mertz M, Kampermann H, Bratzik S and Bruss D 2013 Phys. Rev. A 87 012315
[50] Lim C C W, Curty M, Walenata F, Xu F and Zbinden H 2014 Phys. Rev. A 89 022307
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!