Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110303    DOI: 10.1088/1674-1056/abf350
GENERAL Prev   Next  

Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels

Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强)
School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Reference-frame-independent quantum key distribution (RFI-QKD) can allow a quantum key distribution system to obtain the ideal key rate and transmission distance without reference system calibration, which has attracted much attention. Here, we propose an RFI-QKD protocol based on wavelength division multiplexing (WDM) considering finite-key analysis and crosstalk. The finite-key bound for RFI-QKD with decoy states is derived under the crosstalk of WDM. The resulting secret key rate of RFI-QKD, which is more rigorous, is obtained. Simulation results reveal that the secret key rate of RFI-QKD based on WDM is affected by the multiplexing channel number, as well as crosstalk between adjacent channels.
Keywords:  quantum key distribution      wavelength division multiplexing      secret key rate  
Received:  01 February 2021      Revised:  19 March 2021      Accepted manuscript online:  30 March 2021
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2019XD-A02), the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT) (Grant No. IPOC2021ZT10), and BUPT Innovation and Entrepreneurship Support Program (Grant No. 2021-YC-A315).
Corresponding Authors:  Haiqiang Ma     E-mail:  hqma@bupt.edu.cn

Cite this article: 

Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强) Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels 2021 Chin. Phys. B 30 110303

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[3] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7
[4] Wang F, Xue Q X, Ji T, Li Y L, Xu T and Peng X S 2017 Chin. Phys. Lett. 34 035201
[5] Wang F X, Chen W, Yin Z Q, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 024070
[6] Zhang C M, Zhu J R and Wang Q 2018 Commun. Theor. Phys. 70 379
[7] Tang Z, Wei K, Bedroya O, Qian L and Lo H K 2016 Phys. Rev. A 93 042308
[8] Zhang C M, Wang Q, Li X and Yuan H W 2020 Chin. Phys. B 29 70303
[9] Xu P, Bao W S, Li H W, Wang Y and Bao H Z 2017 Chin. Phys. Lett. 34 020302
[10] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[11] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[12] Lucamarini M, Yuan Z, Dynes J and Shields A 2018 Nature 557 400
[13] Laing A, Scarani V, Rarity J G and Brien J L 2010 Phys. Rev. A 82 012304
[14] Lu F Y, Yin Z Q and Yuan F 2020 Phys. Rev. A 101 052318
[15] Chen H, Wang J, Tang B, Li Z, Liu B and Sun S H 2020 Opt. Lett. 45 3022
[16] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B 29 030303
[17] Gu W Y, Zhao S H, Dong C, Wang X Y and Yang D 2019 Acta Phys. Sin. 68 240301 (in Chinese)
[18] He R S, Jiang M S, Wang Y et al. 2019 Chin. Phys. B 28 040303
[19] Townsend P 1997 Electron. Lett. 33 188
[20] Nweke N I 2005 Appl. Phys. Lett. 87 174103
[21] Tanaka A, Fujiwara M et al. 2008 Opt. Express 16 11354
[22] Yoshino K, Ochi T, Fujiwara M, Sasaki M and Tajima A 2013 Opt. Express 21 31395
[23] Eraerds P, Walenta N, Gisin N and Zbinden H 2010 New J. Phys. 12 063027
[24] Patel K A, Dynes J F et al. 2014 Appl. Phys. Lett. 104 051123
[25] Wang L J, Zou K H et al. 2017 Phys. Rev. A 95 012301
[26] Sun W, Wang L J et al. 2018 J. Appl. Phys. 123 043105
[27] Eriksson T, Hirano T et al. 2019 Commun. Phys. 2 9
[28] Zhang H, Mao Y, Huang R, Guo Y, Wu X D and Zhang L 2018 Chin. Phys. B 27 090307
[29] Zhang X Z, Gong W G, Tan Y G et al. 2009 Chin. Phys. B 18 2143
[30] Tomamichel M, Lim C, Gisin N and Renner R 2012 Nat. Commun. 3 634
[31] Wang Y, Bao W S, Zhou C, Jiang M S and Li H W 2016 Phys. Rev. A 94 032335
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
No Suggested Reading articles found!