CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system |
Yang Yi-Bin (杨亿斌)a b, Liu Ming-Gang (柳铭岗)a b, Chen Wei-Jie (陈伟杰)a b, Han Xiao-Biao (韩小标)a b, Chen Jie (陈杰)a b, Lin Xiu-Qi (林秀其)a b, Lin Jia-Li (林佳利)a b, Luo Hui (罗慧)a b, Liao Qiang (廖强)a b, Zang Wen-Jie (臧文杰)a b, Chen Yin-Song (陈崟松)a b, Qiu Yun-Ling (邱运灵)a b, Wu Zhi-Sheng (吴志盛)a, Liu Yang (刘扬)b, Zhang Bai-Jun (张佰君)a b |
a State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China;
b School of Physics and Engineering, Institute of Power Electronics and Control Technology, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3× 2" Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.
|
Received: 16 December 2014
Revised: 23 April 2015
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
83.60.Hc
|
(Normal stress differences and their effects (e.g. rod climbing))
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17). |
Corresponding Authors:
Liu Yang
E-mail: liuy69@mail.sysu.edu.cn;zhbaij@mail.sysu.edu.cn
|
Cite this article:
Yang Yi-Bin (杨亿斌), Liu Ming-Gang (柳铭岗), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Chen Jie (陈杰), Lin Xiu-Qi (林秀其), Lin Jia-Li (林佳利), Luo Hui (罗慧), Liao Qiang (廖强), Zang Wen-Jie (臧文杰), Chen Yin-Song (陈崟松), Qiu Yun-Ling (邱运灵), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君) In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system 2015 Chin. Phys. B 24 096103
|
[1] |
Li T, Mastro M and Dadgar A 2010 III-V Compound Semiconductors: Integration with Silicon-Based Microelectronics (Boca Raton: CRC Press)
|
[2] |
Dadgar A, Poschenrieder M, Bläsing J, Contreras O, Bertram F, Riemann T, Reiher A, Kunze M, Daumiller I, Krtschil A, Diez A, Kaluza A, Modlich A, Kamp M, Christen J, Ponce F A, Kohn E and Krost A 2003 J. Cryst. Growth 248 556
|
[3] |
Raghavan S, Weng X, Dickey E and Redwing J M 2005 Appl. Phys. Lett. 87 142101
|
[4] |
Luo R, Xiang P, Liu M, Chen T, He Z, Fan B, Zhao Y, Xian Y, Huang S, Zheng Z, Wu Z, Jiang H, Wang G, Liu Y and Zhang B 2011 Jpn. J. Appl. Phys. 50 105501
|
[5] |
Zhang B, Egawa T, Ishikawa H, Liu Y and Jimbo T 2003 Jpn. J. Appl. Phys. 42 L226
|
[6] |
Iwakami S, Yanagihara M, Machida O, Chino E, Kaneko N, Goto H and Ohtsuka K 2004 Jpn. J. Appl. Phys. 43 L831
|
[7] |
Ni Y Q, He Z Y, Zhong J, Yao Y, Yang F, Xiang P, Zhang B J and Liu Y 2013 Chin. Phys. B 22 088104
|
[8] |
Wu Y X, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Zhang S M, Wang Y T, Wang H, Chen G F and Yang H 2009 Chin. Phys. B 18 4413
|
[9] |
Wu Y X, Zhu J J, Chen G F, Zhang S M, Jiang D S, Liu Z S, Zhao D G, Wang H, Wang Y T and Yang H 2010 Chin. Phys. B 19 036801
|
[10] |
Cheng K, Leys M, Degroote S, van Daele B, Boeykens S, Derluyn J, Germain M, van Tendeloo G, Engelen J and Borghs G 2006 J. Electron. Mater. 35 592
|
[11] |
Huang C C, Chang S J, Chuang R W, Lin J C, Cheng Y C and Lin W J 2010 Appl. Surf. Sci. 256 6367
|
[12] |
Kim M H, Do Y G, Kang H C, Noh D Y and Park S J 2001 Appl. Phys. Lett. 79 2713
|
[13] |
Acord J D, Weng X, Dickey E C, Snyder D W and Redwing J M 2008 J. Cryst. Growth 310 2314
|
[14] |
Arslan E, Ozturk M K, Teke A, Ozcelik S and Ozbay E 2008 J. Phys. D: Appl. Phys. 41 155317
|
[15] |
Raghavan S and Redwing J 2005 J. Appl. Phys. 98 023515
|
[16] |
Raghavan S, Weng X, Dickey E and Redwing J M 2006 Appl. Phys. Lett. 88 041904
|
[17] |
Xiang R F, Fang Y Y, Dai J N, Zhang L, Su C Y, Wu Z H, Yu C H, Xiong H, Chen C Q and Hao Y 2011 J. Alloys Compd. 509 2227
|
[18] |
Hsiao Y L, Lu L C, Wu C H, Chang E Y, Kuo C, Maa J S, Lin K L, Luong T T, Huang W C, Chang C H, Dee C F and Majlis B Y 2012 Jpn. J. Appl. Phys. 51 025505
|
[19] |
Able A, Wegscheider W, Engl K and Zweck J 2005 J. Cryst. Growth 276 415
|
[20] |
Aida H, Lee D S, Belousov M and Sunakawa K 2012 Jpn. J. Appl. Phys. 51 012102
|
[21] |
Brunner F, Hoffmann V, Knauer A, Steimetz E, Schenk T, Zettler J T and Weyers M 2007 J. Cryst. Growth 298 202
|
[22] |
Cordier Y, Baron N, Semond F, Massies J, Binetti M, Henninger B, Besendahl M and Zettler T 2007 J. Cryst. Growth 301-302 71
|
[23] |
Dadgar A, Hums C, Diez A, Bläsing J and Krost A 2006 J. Cryst. Growth 297 279
|
[24] |
Dadgar A, Schulze F, Zettler T, Haberland K, Clos R, Straßburger G, Bläsing J, Diez A and Krost A 2004 J. Cryst. Growth 272 72
|
[25] |
Floro J A, Chason E, Cammarata R C and Srolovitz D J 2002 MRS Bull. 27 19
|
[26] |
Krost A, Dadgar A, Strassburger G and Clos R 2003 Phys. Status Solidi A 200 26
|
[27] |
Raghavan S and Redwing J M 2004 J. Cryst. Growth 261 294
|
[28] |
Koukitu A, Mayumi M and Kumagai Y 2002 J. Cryst. Growth 246 230
|
[29] |
Sengupta D, Mazumder S, Kuykendall W and Lowry S A 2005 J. Cryst. Growth 279 369
|
[30] |
Touré A, Halidou I, Benzarti Z and Boufaden T 2009 Microelectron. J. 40 363
|
[31] |
Dadgar A, Fritze S, Schulz O, Hennig J, Bläsing J, Witte H, Diez A, Heinle U, Kunze M, Daumiller I, Haberland K and Krost A 2013 J. Cryst. Growth 370 278
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|