Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 096103    DOI: 10.1088/1674-1056/24/9/096103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system

Yang Yi-Bin (杨亿斌)a b, Liu Ming-Gang (柳铭岗)a b, Chen Wei-Jie (陈伟杰)a b, Han Xiao-Biao (韩小标)a b, Chen Jie (陈杰)a b, Lin Xiu-Qi (林秀其)a b, Lin Jia-Li (林佳利)a b, Luo Hui (罗慧)a b, Liao Qiang (廖强)a b, Zang Wen-Jie (臧文杰)a b, Chen Yin-Song (陈崟松)a b, Qiu Yun-Ling (邱运灵)a b, Wu Zhi-Sheng (吴志盛)a, Liu Yang (刘扬)b, Zhang Bai-Jun (张佰君)a b
a State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China;
b School of Physics and Engineering, Institute of Power Electronics and Control Technology, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  

In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3× 2" Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.

Keywords:  stresses      metal organic chemical vapor deposition      wafer bowing      in-situ reflectivity mapping  
Received:  16 December 2014      Revised:  23 April 2015      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  83.60.Hc (Normal stress differences and their effects (e.g. rod climbing))  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).

Corresponding Authors:  Liu Yang     E-mail:  liuy69@mail.sysu.edu.cn;zhbaij@mail.sysu.edu.cn

Cite this article: 

Yang Yi-Bin (杨亿斌), Liu Ming-Gang (柳铭岗), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Chen Jie (陈杰), Lin Xiu-Qi (林秀其), Lin Jia-Li (林佳利), Luo Hui (罗慧), Liao Qiang (廖强), Zang Wen-Jie (臧文杰), Chen Yin-Song (陈崟松), Qiu Yun-Ling (邱运灵), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君) In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system 2015 Chin. Phys. B 24 096103

[1] Li T, Mastro M and Dadgar A 2010 III-V Compound Semiconductors: Integration with Silicon-Based Microelectronics (Boca Raton: CRC Press)
[2] Dadgar A, Poschenrieder M, Bläsing J, Contreras O, Bertram F, Riemann T, Reiher A, Kunze M, Daumiller I, Krtschil A, Diez A, Kaluza A, Modlich A, Kamp M, Christen J, Ponce F A, Kohn E and Krost A 2003 J. Cryst. Growth 248 556
[3] Raghavan S, Weng X, Dickey E and Redwing J M 2005 Appl. Phys. Lett. 87 142101
[4] Luo R, Xiang P, Liu M, Chen T, He Z, Fan B, Zhao Y, Xian Y, Huang S, Zheng Z, Wu Z, Jiang H, Wang G, Liu Y and Zhang B 2011 Jpn. J. Appl. Phys. 50 105501
[5] Zhang B, Egawa T, Ishikawa H, Liu Y and Jimbo T 2003 Jpn. J. Appl. Phys. 42 L226
[6] Iwakami S, Yanagihara M, Machida O, Chino E, Kaneko N, Goto H and Ohtsuka K 2004 Jpn. J. Appl. Phys. 43 L831
[7] Ni Y Q, He Z Y, Zhong J, Yao Y, Yang F, Xiang P, Zhang B J and Liu Y 2013 Chin. Phys. B 22 088104
[8] Wu Y X, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Zhang S M, Wang Y T, Wang H, Chen G F and Yang H 2009 Chin. Phys. B 18 4413
[9] Wu Y X, Zhu J J, Chen G F, Zhang S M, Jiang D S, Liu Z S, Zhao D G, Wang H, Wang Y T and Yang H 2010 Chin. Phys. B 19 036801
[10] Cheng K, Leys M, Degroote S, van Daele B, Boeykens S, Derluyn J, Germain M, van Tendeloo G, Engelen J and Borghs G 2006 J. Electron. Mater. 35 592
[11] Huang C C, Chang S J, Chuang R W, Lin J C, Cheng Y C and Lin W J 2010 Appl. Surf. Sci. 256 6367
[12] Kim M H, Do Y G, Kang H C, Noh D Y and Park S J 2001 Appl. Phys. Lett. 79 2713
[13] Acord J D, Weng X, Dickey E C, Snyder D W and Redwing J M 2008 J. Cryst. Growth 310 2314
[14] Arslan E, Ozturk M K, Teke A, Ozcelik S and Ozbay E 2008 J. Phys. D: Appl. Phys. 41 155317
[15] Raghavan S and Redwing J 2005 J. Appl. Phys. 98 023515
[16] Raghavan S, Weng X, Dickey E and Redwing J M 2006 Appl. Phys. Lett. 88 041904
[17] Xiang R F, Fang Y Y, Dai J N, Zhang L, Su C Y, Wu Z H, Yu C H, Xiong H, Chen C Q and Hao Y 2011 J. Alloys Compd. 509 2227
[18] Hsiao Y L, Lu L C, Wu C H, Chang E Y, Kuo C, Maa J S, Lin K L, Luong T T, Huang W C, Chang C H, Dee C F and Majlis B Y 2012 Jpn. J. Appl. Phys. 51 025505
[19] Able A, Wegscheider W, Engl K and Zweck J 2005 J. Cryst. Growth 276 415
[20] Aida H, Lee D S, Belousov M and Sunakawa K 2012 Jpn. J. Appl. Phys. 51 012102
[21] Brunner F, Hoffmann V, Knauer A, Steimetz E, Schenk T, Zettler J T and Weyers M 2007 J. Cryst. Growth 298 202
[22] Cordier Y, Baron N, Semond F, Massies J, Binetti M, Henninger B, Besendahl M and Zettler T 2007 J. Cryst. Growth 301-302 71
[23] Dadgar A, Hums C, Diez A, Bläsing J and Krost A 2006 J. Cryst. Growth 297 279
[24] Dadgar A, Schulze F, Zettler T, Haberland K, Clos R, Straßburger G, Bläsing J, Diez A and Krost A 2004 J. Cryst. Growth 272 72
[25] Floro J A, Chason E, Cammarata R C and Srolovitz D J 2002 MRS Bull. 27 19
[26] Krost A, Dadgar A, Strassburger G and Clos R 2003 Phys. Status Solidi A 200 26
[27] Raghavan S and Redwing J M 2004 J. Cryst. Growth 261 294
[28] Koukitu A, Mayumi M and Kumagai Y 2002 J. Cryst. Growth 246 230
[29] Sengupta D, Mazumder S, Kuykendall W and Lowry S A 2005 J. Cryst. Growth 279 369
[30] Touré A, Halidou I, Benzarti Z and Boufaden T 2009 Microelectron. J. 40 363
[31] Dadgar A, Fritze S, Schulz O, Hennig J, Bläsing J, Witte H, Diez A, Heinle U, Kunze M, Daumiller I, Haberland K and Krost A 2013 J. Cryst. Growth 370 278
[1] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
[2] Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organicchemical vapor deposition
Ya-Chao Zhang(张雅超), Xiao-Wei Zhou(周小伟), Sheng-Rui Xu (许晟瑞), Da-Zheng Chen(陈大正), Zhi-Zhe Wang(王之哲), Xing Wang(汪星), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(1): 018102.
[3] Retarded thermal oxidation of strained Si substrate
Sun Jia-Bao (孙家宝), Tang Xiao-Yu (唐晓雨), Yang Zhou-Wei (杨周伟), Shi Yi (施毅), Zhao Yi (赵毅). Chin. Phys. B, 2014, 23(6): 066103.
[4] Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition
Li Ming (黎明), Wang Yong (王勇), Wong Kai-Ming (王凯明), Lau Kei-May (刘纪美). Chin. Phys. B, 2014, 23(3): 038403.
[5] Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template
Li Jun-Ze (李俊泽), Tao Yue-Bin (陶岳彬), Chen Zhi-Zhong (陈志忠), Jiang Xian-Zhe (姜显哲), Fu Xing-Xing (付星星), Jiang Shuang (姜爽), Jiao Qian-Qian (焦倩倩), Yu Tong-Jun (于彤军), Zhang Guo-Yi (张国义). Chin. Phys. B, 2014, 23(1): 016101.
[6] Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells
Chen Xin (陈鑫), Zhao Bi-Jun (赵璧君), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Li Dan-Wei (李丹伟), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体). Chin. Phys. B, 2013, 22(7): 078402.
[7] Size-dependent thermal stresses in the core–shell nanoparticles
Astefanoaei I, Dumitru I, Stancu Al. Chin. Phys. B, 2013, 22(12): 128102.
[8] The reliability of AlGaN/GaN high electron mobility transistors under step-electrical stresses
Ma Xiao-Hua(马晓华), Jiao Ying(焦颖), Ma Ping(马平), He Qiang(贺强), Ma Ji-Gang(马骥刚), Zhang Kai(张凯), Zhang Hui-Long(张会龙), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) . Chin. Phys. B, 2011, 20(12): 127305.
[9] Effect of electromechanical boundary conditions on the properties of epitaxial ferroelectric thin films
Zhou Zhi-Dong(周志东), Zhang Chun-Zu(张春祖), and Jiang Quan(蒋泉) . Chin. Phys. B, 2011, 20(10): 107701.
[10] Dependence of stresses on grain orientations in BCC polycrystalline films on substrates
Zhang Jian-Min (张建民), Zhang Yan (张研), Xu Ke-Wei (徐可为). Chin. Phys. B, 2005, 14(9): 1862-1865.
No Suggested Reading articles found!