Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 016101    DOI: 10.1088/1674-1056/23/1/016101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template

Li Jun-Ze (李俊泽), Tao Yue-Bin (陶岳彬), Chen Zhi-Zhong (陈志忠), Jiang Xian-Zhe (姜显哲), Fu Xing-Xing (付星星), Jiang Shuang (姜爽), Jiao Qian-Qian (焦倩倩), Yu Tong-Jun (于彤军), Zhang Guo-Yi (张国义)
State Key Laboratory for Artificial Microstructures and Macroscopic Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  The high power GaN-based blue light emitting diode (LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition (MOCVD), hydride vapor-phase epitaxial (HVPE), and laser lift-off (LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), Rutherford back-scattering (RBS), photoluminescence, current-voltage and light output-current measurements. The width of (0002) reflection in XRD rocking curve, which reaches 173" for the thick GaN template LED, is less than that for the conventional one, which reaches 258". The HRTEM images show that the multiple quantum wells (MQWs) in 80-μm-thick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-μm-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80-μm-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation.
Keywords:  homoepitaxy      strain relaxation      metal organic chemical vapor deposition (MOCVD)      hydride vapor-phase epitaxy (HVPE)  
Received:  14 April 2013      Revised:  27 June 2013      Accepted manuscript online: 
PACS:  61.10.Nz  
  78.55.Cr (III-V semiconductors)  
  81.05.Ea (III-V semiconductors)  
Fund: Project supported by the National Basic Research Foundation of China (Grant Nos. TG2011CB301905 and TG2012CB619304) and the National Natural Science Foundation of China (Grant Nos. 60876063 and 61076012).
Corresponding Authors:  Chen Zhi-Zhong     E-mail:  zzchen@pku.edu.cn

Cite this article: 

Li Jun-Ze (李俊泽), Tao Yue-Bin (陶岳彬), Chen Zhi-Zhong (陈志忠), Jiang Xian-Zhe (姜显哲), Fu Xing-Xing (付星星), Jiang Shuang (姜爽), Jiao Qian-Qian (焦倩倩), Yu Tong-Jun (于彤军), Zhang Guo-Yi (张国义) Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template 2014 Chin. Phys. B 23 016101

[1] Cao X A and Arthur S D 2004 Appl. Phys. Lett. 85 3971
[2] Grandjean N 2001 Semicond. Sci. Technol. 16 358
[3] Cao X A, Lu H and Kaminsky E B 2007 J. Cryst. Growth 300 382
[4] Senawiratne J, Chatterjee A and Detchprohma T 2010 Thin Solid Film 518 1732
[5] Chao C L and Xuan R 2011 IEEE Photonic. Technol. Lett. 23 798
[6] Mion C, Muth J F, Preble E A and Hanser D 2006 Appl. Phys. Lett. 89 92123
[7] Gogova D and Kasic A 2004 J. Appl. Phys. 96 799
[8] Gorgens L, Ambacher O, Stutzmann M and Miskys C 2000 Appl. Phys. Lett. 76 577
[9] Speck J S, Brewer M A, Beltz G, Romanov A E and Pompe W 1996 J. Appl. Phys. 80 3808
[10] Reynolds D C, Look D C, Jogai B and Hoelscher J E 2000 J. Appl. Phys. 88 1460
[11] Johnson M C, Bourret-Courchesne E D and Wu J 2004 J. Appl. Phys. 96 1381
[12] Chen Z Z, Zhang R and Zhu J M 2002 Chin. Phys. Lett. 19 375
[13] Chichibu S F, Kagaya M and Corfdir P 2012 Semicond. Sci. Technol. 27 024008
[14] Sasaoka C, Sunakawa H, Kimura A and Nido M 1998 J. Cryst. Growth 189–190 61
[15] Sun Y J, Qi S L and Chen Z Z 2009 Phys. Status Solidi (c) 6 S623
[16] Lin D W, Lin C C and Chiu C H 2011 J. Electrochem. Soc. 158 H1103
[17] Huang L, Liu F and Zhu J X 2012 J. Cryst. Growth 347 88
[18] Chen K M, Wu Y H, Yeh Y H and Chen H C 2011 J. Cryst. Growth 318 454
[19] Detchprohm T, Xia Y and Xi Y 2007 J. Cryst. Growth 298 272
[20] Ohno A, Tomita N, Yamada T and Okagawa H 2007 J Cryst. Growth 298 518
[21] Darakchieva V and Paskova T 2005 J. Appl. Phys. 97 013517
[22] Lazić, Moreno M and Calleja J M 2005 Appl. Phys. Lett. 86 061905
[23] Ho I H and Stringfellow G B 1996 Appl. Phys. Lett. 69 2701
[24] Zhao W, Wang L and Wang J X 2011 Chin. Phys. B 20 076101
[1] Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells
Chen Xin (陈鑫), Zhao Bi-Jun (赵璧君), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Li Dan-Wei (李丹伟), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体). Chin. Phys. B, 2013, 22(7): 078402.
[2] Strain relaxation and optical properties of etched In0.19Ga0.81N nanorod arrays on the GaN template
Zhang Dong-Yan (张东炎), Zheng Xin-He (郑新和), Li Xue-Fei (李雪飞), Wu Yuan-Yuan (吴渊渊), Wang Hui (王辉), Wang Jian-Feng (王建峰), Yang Hui (杨辉). Chin. Phys. B, 2012, 21(8): 087802.
[3] Effects of the strain relaxation of an AlGaN barrier layer induced by various cap layers on the transport properties in AlGaN/GaN heterostructures
Liu Zi-Yang(刘子扬), Zhang Jin-Cheng(张进成), Duan Huan-Tao(段焕涛), Xue Jun-Shuai(薛军帅),Lin Zhi-Yu(林志宇), Ma Jun-Cai(马俊彩), Xue Xiao-Yong(薛晓咏), and Hao Yue(郝跃) . Chin. Phys. B, 2011, 20(9): 097701.
[4] STM observation of pit formation and evolution during the epitaxial growth of Si on Si(001) surface
Xu Mao-Jie(徐茂杰), Jeyanthinath Mayandi, Wang Xue-Sen(王学森), Jia Jin-Feng(贾金锋),Xue Qi-Kun(薛其坤), and Dou Xiao-Ming(窦晓鸣). Chin. Phys. B, 2010, 19(10): 106102.
[5] The strain relaxation of InAs/GaAs self-organized quantum dot
Liu Yu-Min(刘玉敏), Yu Zhong-Yuan(俞重远), and Ren Xiao-Min(任晓敏). Chin. Phys. B, 2009, 18(3): 881-887.
No Suggested Reading articles found!