Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 128102    DOI: 10.1088/1674-1056/22/12/128102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Size-dependent thermal stresses in the core–shell nanoparticles

Astefanoaei I, Dumitru I, Stancu Al
Faculty of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506, Iasi, Romania
Abstract  The thermal stress in a magnetic core–shell nanoparticle during a thermal process is an important parameter to be known and controlled in the magnetization process of the core–shell system. In this paper we analyze the stress that appears in a core–shell nanoparticle subjected to a cooling process. The external surface temperature of the system, considered in equilibrium at room temperature, is instantly reduced to a target temperature. The thermal evolution of the system in time and the induced stress are studied using an analytical model based on a time-dependent heat conduction equation and a differential displacement equation in the formalism of elastic displacements. The source of internal stress is the difference in contraction between core and shell materials due to the temperature change. The thermal stress decreases in time and is minimized when the system reaches the thermal equilibrium. The radial and azimuthal stress components depend on system geometry, material properties, and initial and final temperatures. The magnitude of the stress changes the magnetic state of the core–shell system. For some materials, the values of the thermal stresses are larger than their specific elastic limits and the materials begin to deform plastically in the cooling process. The presence of the induced anisotropy due to the plastic deformation modifies the magnetic domain structure and the magnetic behavior of the system.
Keywords:  thermal stresses      thermal equilibrium      core–shell particle  
Received:  15 January 2013      Revised:  05 April 2013      Accepted manuscript online: 
PACS:  81.40.Lm (Deformation, plasticity, and creep)  
  81.70.Pg (Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  46.25.Hf (Thermoelasticity and electromagnetic elasticity (electroelasticity, magnetoelasticity))  
Fund: Project supported by Romanian CNCS–UEFISCDI project IDEI-EXOTIC (Grant No. 185/25.10.2011).
Corresponding Authors:  Astefanoaei I     E-mail:  h.hasanabadi@shahroodut.ac.ir

Cite this article: 

Astefanoaei I, Dumitru I, Stancu Al Size-dependent thermal stresses in the core–shell nanoparticles 2013 Chin. Phys. B 22 128102

[1] Tartaj P, Morales M, Verdaguer S, Gonzalez-Carreno T and Serna C J 2003 J. Phys. D: Appl. Phys. 36 R182
[2] Duan H L, Karihaloo B L, Wang J and Yi X 2006 Nanotechnology 17 3380
[3] Hood J D, Bednarski M, Frausto R, Guccione S, Reisfeld R A, Xiang R and Cheresh D A 2002 Science 296 2404
[4] Batlle X and Labarta A 2002 J. Phys. D: Appl. Phys. 35 R15
[5] Meiklejohn W H and Bean C P 1957 Phys. Rev. B 105 904
[6] Takano K, Kodama R H, Berkowitz A E, Cao W and Thomas G 1997 Phys. Rev. Lett. 79 1130
[7] Martínez B, Obradors X, Balcells L, Rouanet A and Monty C 1998 Phys. Rev. Lett. 80 181
[8] Bianco L, Hernando A, Multigner M, Prados C, Sanchez-Lopez J C, Fernandez A, Conde C F and Conde A 1998 J. Appl. Phys. 84 2189
[9] Duan H L, Karihaloo B L, Wang J and Yi X 2006 Nanotechnology 17 3380
[10] Wiggins J, Carpenter E E and O’Connor C J 2000 J. Appl. Phys. 87 5651
[11] Abe M and Suwa T 2004 Phys. Rev. B 70 235103
[12] Ammar M, Mazaleyrat F, Bonnet J P, Audebert P, Brosseau A, Wang G and Champion Y 2007 Nanotechnology 18 285606
[13] Chen C, Kitakami O and Shimada Y 1998 J. Appl. Phys. 84 2184
[14] Gangopadhyay S G C, Hadjipanayis B D, Sorensen C M, Klabunde K J, Papaefthymiou V and Kostikas A 1992 Phys. Rev. B 45 9778
[15] Barandiaran J M, Gutierrez J and Garcia-Arribas A 2011 Phys. Status Solidi A 208 1
[16] Colin J 2010 Phys. Rev. B 82 054118
[17] Silva E L, Nunes W C, Knobel M, Denardin J C, Zanchet D, Pirota K, Navas D and Vázquez M 2006 Physica B 384 22
[18] Astefanoaei I, Dumitru I, Diaconu A, Spinu L and Stancu Al 2008 J. Appl. Phys. 103 07D930
[19] Astefanoaei I, Stancu Al and Chiriac H 2007 J. Magn. Magn. Mater. 316 E276
[20] Qin W P, Qin G S, Zhang J S, Wu C F, Wang J W and Du G T 2001 Acta Phys. Sin. 50 1467 (in Chinese)
[21] Zhang A L, He Z Y and Su L R 2007 Chin. Phys. 16 3747
[22] Howatson A M, Lund P G and Todd J D 2005 Engineering Tables and Data p. 41
[23] Dieter G E 1988 Mechanical Metallurgy (UK: McGraw-Hill) p. 36
[24] Schneider P J 1955 Conduction Heat Transfer (Cambridge: Addison Wesley Publishing Company Inc.) p. 18
[25] Singh J and Tomar S K 2011 Int. J. Eng. (Science and Technology) 3 34
[26] Marin E 2010 Lat. Am. J. Phys. Educ. 4 1
[27] Voz S 2007 Topics in Applied Physics (Paris: Springer) p. 1–13
[28] Wolf E L 2004 Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience (Weinheim: Wiley-VCH) p. 145
[29] Wang M, Yang N and Guo Z 2011 J. Appl. Phys. 110 064310
[30] Gu X K and Yang B C 2007 Chin. Phys. 16 3777
[31] Bosley B A and Weiner J H 1960 Theory of Thermal Stresses (New York: Wiley) p. 34
[32] Lekhnitskii S G 1977 Theory of Elasticity of an Anisotropic Body (Moscow: Mir Moscow Publishing Company Inc.) p. 48
[33] Landau L and Lifchitz E 1990 Théorie de l’elasticité (Moscow: Mir Moscow Publishing Company Inc.) p. 120
[34] Chikazumi S 1997 Physics of Ferromagnetism (Oxford: Clarendon Oxford Publishing Company Inc.) p. 377
[35] Williamson A J and Zunger A 1999 Phys. Rev. B 59 15819
[36] Abe M, Kuroda J and Matsumoto M 2002 J. Appl. Phys. 91 7373
[37] Abe M and Suwa T 2004 Phys. Rev. B 70 23510
[38] Nielsen O V, Barandiaran J M, Hernando A and Madurga V 1985 J. Magn. Magn. Mater. 49 124
[39] Barandiaran J M, Hernando A and Nielsen O V 1985 J. Magn. Magn. Mater. 46 317
[1] Thermal quantum discord in Heisenberg models with Dzyaloshinski–Moriya interaction
Wang Lin-Cheng(王林成), Yan Jun-Yan(闫俊彦), and Yi Xue-Xi(衣学喜) . Chin. Phys. B, 2011, 20(4): 040305.
[2] Quantum thermal discord in a two-spin-1/2 XXZ model
Wang Qiong(王琼), Liao Jie-Qiao(廖洁桥), and Zeng Hao-Sheng(曾浩生). Chin. Phys. B, 2010, 19(10): 100311.
[3] Suppression of decoherence by bath ordering
Jing Jun(景俊) and Ma Hong-Ru(马红孺). Chin. Phys. B, 2007, 16(6): 1489-1504.
No Suggested Reading articles found!