Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 096102    DOI: 10.1088/1674-1056/24/9/096102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Atomistic simulation of topaz: Structure, defect, and vibrational properties

Niu Ji-Nan (牛继南)a b, Shen Shai-Shai (沈晒晒)b, Liu Zhang-Sheng (刘章生)b, Feng Pei-Zhong (冯培忠)b, Ou Xue-Mei (欧雪梅)b, Qiang Ying-Huai (强颖怀)b, Zhu Zhen-Cai (朱真才)a
a Post-doctoral Mobile Station of Mechanical Engineering, China University of Mining and Technology, Xuzhou 221116, China;
b School of Materals Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract  The clay force field (CLAYFF) was supplemented by fluorine potential parameters deriving from experimental structures and used to model various topazes. The calculated cell parameters agree well with the observed structures. The quasi-linear correlation of the b lattice parameter to different F/OH ratios calculated by changing fluorine contents in OH-topaz supports that the F content can be measured by an optical method. Hydrogen bond calculations reveal that the hydrogen bond interaction to H1 is stronger than that to H2, and the more fluorine in the structure, the stronger the hydrogen bond interaction of hydroxyl hydrogen. Defect calculations provide the formation energies of all common defects and can be used to judge the ease of formation of them. The calculated vibrational frequencies are fairly consistent with available experimental results, and the 1080-cm-1 frequency often occurring in natural OH-topaz samples can be attributed to Si-F stretching because of the F substitution to OH and the Al-Si exchange.
Keywords:  topaz      modeling      lattice      defect  
Received:  09 January 2015      Revised:  11 May 2015      Accepted manuscript online: 
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.72.Bb (Theories and models of crystal defects)  
  78.30.-j (Infrared and Raman spectra)  
  91.65.An (Mineral and crystal chemistry)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20140212) and the Fundamental Research Funds for the Central Universities China (Grant Nos. 2012QNA08).
Corresponding Authors:  Niu Ji-Nan     E-mail:  jinan.niu@cumt.edu.cn

Cite this article: 

Niu Ji-Nan (牛继南), Shen Shai-Shai (沈晒晒), Liu Zhang-Sheng (刘章生), Feng Pei-Zhong (冯培忠), Ou Xue-Mei (欧雪梅), Qiang Ying-Huai (强颖怀), Zhu Zhen-Cai (朱真才) Atomistic simulation of topaz: Structure, defect, and vibrational properties 2015 Chin. Phys. B 24 096102

[1] Northrup P A, Leinenweber K and Parise J B 1994 Am. Miner. 79 401
[2] Jackson R A and Valerio M E G 2004 J. Phys.: Condens. Matter 16 S2771
[3] Souza D N, Lima J F, Valerio M E G, Fantini F, Pimenta M A, Moreira R L and Caldas L V E 2002 Nucl. Instr. Meth. B 191 230
[4] Gaft M, Nagli L, Reisfeld R, Panczer G and Brestel M 2003 J. Lumin. 102-103 349
[5] Jackson R A and Valerio M E G 2004 Nucl. Instr. Meth. B 218 42
[6] Marques C, Falcao A, da Silva R C and Alves E 2000 Nucl. Instr. Meth. B 166 204
[7] Teppen B J, Rasmussen K, Bertsch P M, Miller D M and Schafer L 1997 J. Phys. Chem. B 101 1579
[8] Bougeard D, Smirnov K S and Geidel E 2000 J. Phys. Chem. B 104 9210
[9] Sainz-Diaz C I, Hernandez-Laguna A and Dove M T 2001 Phys. Chem. Miner. 28 130
[10] Cygan R T, Liang J J and Kalinichev A G 2004 J. Phys. Chem. B 108 1255
[11] Larentzos J P, Greathouse J A and Cygan R T 2007 J. Phys. Chem. C 111 12752
[12] Zhou B, Xiu P, Wang C L and Fang H B 2012 Chin. Phys. B 21 026801
[13] Liu T and Chen Y Q 2013 Chin. Phys. B 22 027103
[14] Suter J L, Groen D and Coveney P V 2015 Adv. Mater. 27 966
[15] Niu J N and Qiang Y H 2009 Acta Phys. Chim. Sin. 25 1167
[16] Niu J N, Qiang Y H and Wang Z H 2010 Acta Phys. Chim. Sin. 26 1541
[17] Jackson R A, Heide G and Valerio M E G 2002 Rad. Eff. Def. Sol. 157 845
[18] Herron N, Thorn D L, Harlow R L, Jones G A and Parise J B 1995 Chem. Mater. 7 75
[19] Gale J D 1997 J. Chem. Soc. Faraday Trans. 93 629
[20] Pullman B 1981 Intermolecular Forces (Dordrecht: D. Reidel Publishing Company) pp. 331-342
[21] Shanno D F 1970 Math. Comput. 24 647
[22] Parise J B, Cuff C and Moore F H 1980 Mine Mag. 43 943
[23] Mott N F and Littleton M J 1938 Trans. Faraday Soc. 34 485
[24] Wright K and Catlow C R A 1994 Phys. Chem. Miner. 20 515
[25] Gale J D 2009 GULP Manual (Version 3.4)http://nanochemistry.curtin.edu.au/gulp/help/manuals.cfm (2015.1.5)
[26] Brown I D 1992 Acta Cryst. B 48 553
[27] Zhou G D and Duan L Y 2002 The Base of Structural Chemistry (3rd edn.) (Beijing: Peking University Press) pp. 221-223 (in Chinese)
[28] Brown I D 2001 Accumulated Table of Bond Valence Parametershttp://www.ccp14.ac.uk/ccp/web-mirrors/i_d_brown/bond_valence_param/ (2015.1.5)
[29] Chen Z L, Xu W R and Tang L D 2007 Molecular Modeling Theory and Practice (Beijing: Chemical Industry Press) pp. 37-41 (in Chinese)
[30] Alberico A, Ferrando S, Ivaldi G and Ferraris G 2003 Euro. J. Miner. 15 875
[31] Zobetz E, Zemann J, Heger G and Voellenkle H 1979 Anz. Österr. Akad. Wiss. Math.-Naturwiss. Kl. 116 145
[32] Diego G, Nestola F, Bromiley G D and Loose A 2006 Am. Miner. 91 1839
[33] Ribbe P H and Rosenberg P E 1971 Am. Miner. 56 1812
[34] Rosenberg P E 1967 Am. Miner. 52 1890
[35] Wunder B, Rubie D C, Ross C R, Medenbach O, Seifert F and Schreyer W 1993 Am. Miner. 78 285
[36] Gellings P J and Bouwmeester H J 1997 Handbook of Solid State Electrochemistry (CRC Press) pp. 2-5
[37] Souza D N, Valerio M E G, Lima J F and Caldas L V E 2000 Nucl. Instr. Meth. B 166-167 209
[38] Souza D N, Valerio M E G, Lima J F and Caldas L V E 2002 Radiat. Prot. Dosim. 100 413
[39] Souza D N, Valerio M E G, Lima J F and Caldas L V E 2003 Int. J. Appl. Radiat. Isot. 58 489
[40] Beny J M and Piriou B 1987 Phys. Chem. Miner. 15 148
[41] Kloprogge J T and Frost R L 2000 Spectrochim. Acta A 56 501
[42] Griffith W P 1969 J. Chem. Soc. A 1372
[43] Wunder B and Marler B 1997 Eur. J. Mineral. 9 1147
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[5] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[6] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[7] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[8] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[9] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[12] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[13] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[14] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[15] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
No Suggested Reading articles found!