Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094214    DOI: 10.1088/1674-1056/24/9/094214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Realizing mode conversion and optical diode effect by coupling photonic crystal waveguides with cavity

Ye Han (叶寒)a, Zhang Jin-Qian-Nan (张金倩楠)a, Yu Zhong-Yuan (俞重远)a, Wang Dong-Lin (王东林)b, Chen Zhi-Hui (陈智辉)c
a State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
c Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even (odd) mode to the odd (even) mode in the W2 waveguide during the forward (backward) transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 dB unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits.
Keywords:  mode conversion      optical diode      photonic crystal  
Received:  22 January 2015      Revised:  01 April 2015      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
  42.82.-m (Integrated optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61307069), Beijing Excellent Ph. D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021017-3).
Corresponding Authors:  Ye Han     E-mail:  Han_ye@bupt.edu.cn

Cite this article: 

Ye Han (叶寒), Zhang Jin-Qian-Nan (张金倩楠), Yu Zhong-Yuan (俞重远), Wang Dong-Lin (王东林), Chen Zhi-Hui (陈智辉) Realizing mode conversion and optical diode effect by coupling photonic crystal waveguides with cavity 2015 Chin. Phys. B 24 094214

[1] Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401
[2] Hwang J, Song M H, Park B, Nishimura S, Toyooka T, Wu J W, Takanishi Y, Ishikawa K and Takezoe H 2005 Nat. Mater. 4 383
[3] Bi L, Hu J J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C A 2011 Nat. Photon. 5 758
[4] Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729
[5] Fan S, Baets R, Petrov A, Yu Z F, Joannopoulos J D, Freude W, Melloni A, Popović M, Vanwolleghem M, Jalas D, Eich M, Krause M, Renner H, Brinkmeyer E and Doerr C R 2012 Science 335 38
[6] Xu J Y, Zhuang X J, Guo P F, Huang Q W, Hu W, Zhang Q L, Wan Q, Zhu X L, Yang Z Y, Tong L M, Duan X F and Pan A L 2012 Sci. Rep. 2 820
[7] Wang Z, Chong Y, Joannopoulos J D and Soljacić M 2009 Nature 461 772
[8] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
[9] Yu Z, Veronis G, Wang Z and Fan S 2008 Phys. Rev. Lett. 100 023902
[10] Poo Y, Wu R X, Lin Z F, Yang Y and Chan C T 2011 Phys. Rev. Lett. 106 093903
[11] Fu J X, Liu R J, Gan L and Li Z Y 2011 EPL 93 24001
[12] Yang Y, Poo Y, Wu R X, Gu Y and Chen P 2013 Appl. Phys. Lett. 102 231113
[13] Soljacić M, Luo C, Joannopoulos J D and Fan S 2003 Opt. Lett. 28 637
[14] Lin X S, Wu W Q, Zhou H, Zhou F K and Lan S 2006 Opt. Express 14 2429
[15] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M H 2012 Science 335 447
[16] Bulgakov E N and Sadreev A F 2014 Opt. Lett. 39 1787
[17] Fan L, Varghese L T, Wang J, Xuan Y, Weiner A M and Qi M H 2013 Opt. Lett. 38 1259
[18] Wang C, Zhou C Z and Li Z Y 2011 Opt. Express 19 26948
[19] Wang C, Zhong X L and Li Z Y 2012 Sci. Rep. 2 674
[20] Lu C C, Hu X Y, Zhang Y B, Li Z Q, Xu X A, Yang H and Gong Q H 2011 Appl. Phys. Lett. 99 051107
[21] Cicek A, Yucel M B, Kaya O A and Ulug B 2012 Opt. Lett. 37 2937
[22] Liu V, Miller D A B and Fan S 2012 Opt. Express 20 28388
[23] Shuai F and Wang Y Q 2013 Opt. Express 21 220
[24] Khavasi A, Rezaei M, Fard A P and Mehrany K 2013 J. Opt. 15 075501
[25] Wang L H, Yang X L, Meng X F, Wang Y R, Chen S X, Huang Z and Dong G Y 2014 Chin. Phys. B 23 034215
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[4] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[9] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[12] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[13] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[14] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[15] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
No Suggested Reading articles found!