Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094213    DOI: 10.1088/1674-1056/24/9/094213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method

Wang Wei-Jie (王卫杰)a b c d, Zhao Zhen-Guo (赵振国)a b c, Zhao Yi (赵艺)d, Zhou Hai-Jing (周海京)a b c, Fu Ce-Ji (符策基)d
a Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
b Software Center for High Performance Numerical Simulation of CAEP, Beijing 100088, China;
c Complicated Electromagnetic Environment Laboratory of CAEP, Mianyang 621900, China;
d LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
Abstract  

Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide (SiC) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure, such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification.

Keywords:  silicon carbide      radiative heat transfer      photonic crystal      optimization method  
Received:  09 February 2015      Revised:  20 March 2015      Accepted manuscript online: 
PACS:  42.70.-a (Optical materials)  
  44.40.+a (Thermal radiation)  
  02.60.-x (Numerical approximation and analysis)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51076002), the National Basis Research Program of China (Grant No. 2013CA328900), and the Key Project of Complicated Electromagnetic Environment Laboratory of CAEP, China (Grant No. 2015E0-01-1).

Corresponding Authors:  Fu Ce-Ji     E-mail:  cjfu@pku.edu.cn

Cite this article: 

Wang Wei-Jie (王卫杰), Zhao Zhen-Guo (赵振国), Zhao Yi (赵艺), Zhou Hai-Jing (周海京), Fu Ce-Ji (符策基) Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method 2015 Chin. Phys. B 24 094213

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 Phys. Rev. Lett. 92 107401
[3] Nie S M and Emery S R 1997 Science 275 1102
[4] Zhan P, Wang Z L, Dong H, Sun J, Wang H T, Zhu S, Ming N and Zi J 2006 Adv. Mater. 18 1612
[5] Volokitin A I and Persson B N J 2001 Phys. Rev. B 63 205404
[6] Volokitin A I and Persson B N J 2007 Rev. Mod. Phys. 79 1291
[7] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[8] Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[9] Avitzour Y, Urzhumov Y A and Shvets G 2009 Phys. Rev. B 79 045131
[10] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Comm. 2 517
[11] Zhao H, Shen Y F and Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese)
[12] Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B and Gordon O 2012 Chin. Phys. B 21 038501
[13] Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S P and Chen Y 2002 Nature 416 61
[14] Lee B J, Fu C J and Zhang Z M 2005 Appl. Phys. Lett. 87 071904
[15] Wang W J, Fu C J and Tan W C 2013 J. Heat Transfer 135 091504
[16] Lee B J, Wang L P and Zhang Z M 2008 Opt. Express 16 11328
[17] Fu C J, Zhang Z M and Tannar D B 2005 Opt. Lett. 30 1873
[18] Wu C, Neuner B, Shvets G, John J, Milder A, Zollars B and Savoy S 2011 Phys. Rev. B 84 075102
[19] Alici K B, Turchan A B, Soukoulis C M and Ozbay E 2011 Opt. Express 19 14260
[20] Rephaeli E, Raman A and Fan S 2013 Nano Lett. 13 1457
[21] Bouchon P, Koechlin C, Pardo F, Haidar R and Pelouard J L 2012 Opt. Lett. 37 1038
[22] Pralle M U, Moelders N, McNeal M P, Puscasu I and Greenwald A C 2002 Appl. Phys. Lett. 81 4685
[23] Puscasu I and Schaich W L 2008 Appl. Phys. Lett. 92 233102
[24] Liu X L, Tyler T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[25] Hajimirza S and EI Hitti G 2012 J. Heat. Tran. 134 102702
[26] Pala R A, White J, Barnard E, Liu J and Brongersma M L 2009 Adv. Mater. 21 3504
[27] Mutitu J G, Shi S, Chen C, Creazzo T, Barnett A, Honsberg C and Prather D W 2008 Opt. Express 16 15238
[28] Pala R A, Liu J, Barnard E S, Askarov D, Garnett E C, Fan S and Brongersma M L 2013 Nat. Comm. 4 2095
[29] Qi H, Ruan L M, Zhang H C, Wang Y M and Tan H P 2007 Int. J. Thermal Sci. 46 649
[30] Magnusson R, Svavarsson H G, Yoon J, Shokooh-Saremi M and Song S H 2012 Appl. Phys. Lett. 100 091106
[31] Wang W J, Fu C J and Tan W C 2014 J. Quant. Spect. Radiative Transfer 132 36
[32] Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press)
[33] Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068
[34] Moharam M G, Pommet D A, Grann E B and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1077
[35] Park K, Lee B J, Fu C J and Zhang Z M 2005 J. Opt. Soc. Am. B 22 1016
[36] Lam V D, Kim J B, Lee S J and Lee Y P 2008 Opt. Exp. 15 16651
[37] Davidon W C 1991 SIAM J. Optim. 1 1
[38] Fletcher R 1987 Practical Methods of Optimization (New York: Wiley Press)
[39] Broyden C G 1970 J. Inst. Math. Appl. 6 76
[40] Fletcher R 1970 Comput. J. 13 317
[41] Goldfarb D 1970 Math. Comput. 24 23
[42] Shanno D F 1970 Math. Comput. 24 647
[43] Shanno D F and Kettler P C 1970 Math. Comput. 24 657
[44] Boyd S and Vandenberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press)
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[7] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[10] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[11] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[12] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[13] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[14] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[15] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
No Suggested Reading articles found!