Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 093402    DOI: 10.1088/1674-1056/24/9/093402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Charge transfer of He2+ with H in a strong magnetic field

Liu Chun-Lei (刘春雷), Zou Shi-Yang (邹士阳), He Bin (何斌), Wang Jian-Guo (王建国)
Data Center for High Energy Density Physics Research, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  

By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He2++H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models.

Keywords:  time-dependent Schrö      dinger equation      strong magnetic field      charge transfer  
Received:  03 December 2014      Revised:  28 April 2015      Accepted manuscript online: 
PACS:  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grants Nos. 11104017, 11025417, 11275029, and 11474032), the National Basic Research Programm of China (Grant No. 2013CB922200), and the Foundation for the Development of Science and Technology of the Chinese Academy of Engineering Physics (Grant Nos. 2014B09036 and 2013A0102005).

Corresponding Authors:  Liu Chun-Lei, He Bin     E-mail:  liuchunlei@iapcm.ac.cn;hebin-rc@163.com

Cite this article: 

Liu Chun-Lei (刘春雷), Zou Shi-Yang (邹士阳), He Bin (何斌), Wang Jian-Guo (王建国) Charge transfer of He2+ with H in a strong magnetic field 2015 Chin. Phys. B 24 093402

[1] Garstang R H 1977 Rep. Prog. Phys. 40 105
[2] Rosner W, Wunner G, Herold H and Ruder H 1984 J. Phys. B 17 29
[3] Kravchenko Y P and Liberman M A 1996 Phys. Rev. A 54 287
[4] Turbiner A V and Lopez V J C 2013 Phys. Rev. Lett. 111 163003
[5] Bibona S, Spagnolo B and Ferrante G 1984 J. Phys. B 17 1093
[6] Grosdanov T P, McDowell M R C and Zarcone M 1985 J. Phys. B 18 921
[7] Bivona S and McDowell M R C 1987 J. Phys. B 20 1541
[8] He B, Wang J G and Janev R K 2009 Phys. Rev. A 79 012706
[9] Shah M B and Gilbody H B 1978 J. Phys. B 11 121
[10] Nutt W L, McCullough R W, Brady K, Shah M B and Gilbody H B 1978 J. Phys. B 11 1457
[11] Hvelplund P and Andersen A 1982 Phys. Scr. 26 375
[12] Havener C C, Rejoub R, Krstic P S and Smith A C H 2005 Phys. Rev. A 71 042707
[13] Minami T, Lee T G, Pindzola M S and Schultz D R 2008 J. Phys. B 41 135201
[14] Feit M and Fleck Jr J 1983 J. Chem. Phys. 78 301
[15] Feit M, Fleck Jr J A and Steiger A 1982 J. Comput. Phys. 47 412
[16] Corey G C and Lemoine D 1992 J. Chem. Phys. 97 4115
[17] Dunseath K, Launary J, Terao-Dunseath M and Mouret L 2002 J. Phys. B 35 3539
[18] Zeng S L, Zou S Y and Yan J 2009 Chin. Phys. Lett. 26 053202
[19] Ning F F, He J F, Zeng S L, Zou S Y and Yan J 2011 Acta Phys. Sin. 60 043201 (in Chinese)
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[8] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[9] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[10] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[11] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[12] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[13] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[14] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[15] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
No Suggested Reading articles found!