Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087303    DOI: 10.1088/1674-1056/24/8/087303
Special Issue: TOPICAL REVIEW — Silicene
TOPICAL REVIEW—Silicene Prev   Next  

Growth mechanism and modification of electronic and magnetic properties of silicene

Liu Hong-Sheng (柳洪盛), Han Nan-Nan (韩楠楠), Zhao Ji-Jun (赵纪军)
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
Abstract  

Silicene, a monolayer of silicon atoms arranged in a honeycomb lattice, has been undergoing rapid development in recent years due to its superior electronic properties and its compatibility with mature silicon-based semiconductor technology. The successful synthesis of silicene on several substrates provides a solid foundation for the use of silicene in future microelectronic devices. In this review, we discuss the growth mechanism of silicene on an Ag (111) surface, which is crucial for achieving high quality silicene. Several critical issues related to the electronic properties of silicene are also summarized, including the point defect effect, substrate effect, intercalation of alkali metal, and alloying with transition metals.

Keywords:  silicene      growth mechanism      electronic properties      substrate effect  
Received:  30 January 2015      Revised:  19 March 2015      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.20.At (Surface states, band structure, electron density of states)  
  75.75.-c (Magnetic properties of nanostructures)  
  68.55.A- (Nucleation and growth)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11134005).

Corresponding Authors:  Zhao Ji-Jun     E-mail:  zhaojj@dlut.edu.cn

Cite this article: 

Liu Hong-Sheng (柳洪盛), Han Nan-Nan (韩楠楠), Zhao Ji-Jun (赵纪军) Growth mechanism and modification of electronic and magnetic properties of silicene 2015 Chin. Phys. B 24 087303

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[3] Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[4] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
[5] Pan L, Liu H J, Wen Y W, Tan X J, Lv H Y, Shi J and Tang X F 2011 Phys. Lett. A 375 614
[6] Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R and Ciraci S 2009 Phys. Rev. B 80 155453
[7] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[8] Shao Z G, Ye X S, Yang L and Wang C L 2013 J. Appl. Phys. 114 093712
[9] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[10] Li X, Mullen J, Jin Z, Borysenko K, Buongiorno Nardelli M and Kim K W 2013 Phys. Rev. B 87 115418
[11] Rojas-Cuervo A M, Fonseca-Romero K M and Rey-González R R 2014 Eur. Phys. J. B 87 67
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[13] Knox K R, Wang S, Morgante A, Cvetko D, Locatelli A, Mentes T O, Niño M A, Kim P and Osgood R M 2008 Phys. Rev. B 78 201408
[14] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[15] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[16] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[17] Léandri C, Oughaddou H, Aufray B, Gay J M, Le Lay G, Ranguis A and Garreau Y 2007 Surf. Sci. 601 262
[18] Aufray B, Kara A, Vizzini S b, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
[19] De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Le Lay G 2010 Appl. Phys. Lett. 96 261905
[20] De Padova P, Quaresima C, Olivieri B, Perfetti P and Le Lay G 2011 J. Phys. D: Appl. Phys. 44 312001
[21] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[22] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[23] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Biberian J P 2012 J. Phys.: Condens. Matter 24 172001
[24] Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088
[25] Resta A, Leoni T, Barth C, Ranguis A, Becker C, Bruhn T, Vogt P and Le Lay G 2013 Sci. Rep. 3 2399
[26] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[27] Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504
[28] Gao J and Zhao J 2012 Sci. Rep. 2 861
[29] Fleurence A F R, Ozaki T, Kawai H, Wang Y and Yukiko Y T 2012 Phys. Rev. Lett. 108 245501
[30] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[31] Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2014 Adv. Mater. 26 2096
[32] De Padova P, Vogt P, Resta A, Avila J, Razado-Colambo I, Quaresima C, Ottaviani C, Olivieri B, Bruhn T, Hirahara T, Shirai T, Hasegawa S, Carmen Asensio M and Le Lay G 2013 Appl. Phys. Lett. 102 163106
[33] De Padova P, Avila J, Resta A, Razado-Colambo I, Quaresima C, Ottaviani C, Olivieri B, Bruhn T, Vogt P, Asensio M C and Le Lay G 2013 J. Phys.: Condens. Matter 25 382202
[34] Vogt P, Capiod P, Berthe M, Resta A, De Padova P, Bruhn T, Le Lay G and Grandidier B 2014 Appl. Phys. Lett. 104 021602
[35] Salomon E, El Ajjouri R, Le Lay G and Angot T 2014 J. Phys.: Condens. Matter 26 185003
[36] De Padova P, Ottaviani C, Quaresima C, Olivieri B, Imperatori P, Salomon E, Angot T, Quagliano L, Romano C, Vona A, Muniz-Miranda M, Generosi A, Paci B and Le Lay G 2014 2D Materials 1 021003
[37] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
[38] Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002
[39] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[40] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[41] Houssa M, Pourtois G, Afanas'ev V V and Stesmans A 2010 Appl. Phys. Lett. 97 112106
[42] Lew Yan Voon L C, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
[43] Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107
[44] Wang X Q, Li H D and Wang J T 2012 Phys. Chem. Chem. Phys. 14 3031
[45] Zhang C W and Yan S S 2012 J. Phys. Chem. C 116 4163
[46] Osborn T H, Farajian A A, Pupysheva O V, Aga R S and Lew Yan Voon L C 2011 Chem. Phys. Lett. 511 101
[47] Gao N, Zheng W T and Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257
[48] Ding Y and Wang Y 2012 Appl. Phys. Lett. 100 083102
[49] Du Y, Zhuang J, Liu H, Xu X, Eilers S, Wu K, Cheng P, Zhao J, Pi X, See K W, Peleckis G, Wang X and Dou S X 2014 ACS Nano 8 10019
[50] Sahin H and Peeters F 2013 Phys. Rev. B 87 085423
[51] Sivek J, Sahin H, Partoens B and Peeters F 2013 Phys. Rev. B 87 085444
[52] Lin X and Ni J 2012 Phys. Rev. B 86 075440
[53] Kaloni T P, Gangopadhyay S, Singh N, Jones B and Schwingenschlögl U 2013 Phys. Rev. B 88 235418
[54] Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
[55] Osborn T H and Farajian A A 2012 J. Phys. Chem. C 116 22916
[56] Gao J, Zhang J, Liu H, Zhang Q and Zhao J 2013 Nanoscale 5 9785
[57] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[58] Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1
[59] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[60] Ivanovskii A L 2012 Russ. Chem. Rev. 81 571
[61] Liu H, Gao J and Zhao J 2014 J. Phys.: Conf. Series 491 012007
[62] Deepthi J and Ayan D 2013 Accounts Chem. Res. 47 593
[63] Pan Y, Zhang L, Huang L, Li L, Meng L, Gao M, Huan Q, Lin X, Wang Y, Du S, Freund H J and Gao H J 2014 Small 10 2215
[64] Okamoto H, Sugiyama Y and Nakano H 2011 Chem. Eur. J. 17 9864
[65] Yan Voon L C L and Guzmán-Verri G G 2014 MRS Bull. 39 366
[66] Yamada-Takamura Y and Friedlein R 2014 Sci. Technol. Adv. Mater. 15 064404
[67] Zhu X and Zeng X C 2003 J. Chem. Phys. 118 3558
[68] Zhu X L, Zeng X C, Lei Y A and Pan B 2004 J. Chem. Phys. 120 8985
[69] Yoo S and Zeng X C 2006 J. Chem. Phys. 124 054304
[70] Shu H, Cao D, Liang P, Wang X, Chen X and Lu W 2014 Phys. Chem. Chem. Phys. 16 304
[71] Hu W, Wu X, Li Z and Yang J 2013 Phys. Chem. Chem. Phys. 15 5753
[72] Hu W, Wu X, Li Z and Yang J 2013 Nanoscale 5 9062
[73] Quhe R, Yuan Y, Zheng J, Wang Y, Ni Z, Shi J, Yu D, Yang J and Lu J 2014 Sci. Rep. 4 5476
[74] Guo Z X, Furuya S, Iwata J I and Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714
[75] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
[76] Wang Y P and Cheng H P 2013 Phys. Rev. B 87 245430
[77] Cahangirov S, Audiffred M, Tang P, Iacomino A, Duan W, Merino G and Rubio A 2013 Phys. Rev. B 88 035432
[78] Avila J, De Padova P, Cho S, Colambo I, Lorcy S, Quaresima C, Vogt P, Resta A, Le Lay G and Asensio M C 2013 J. Phys.: Condens. Matter 25 262001
[79] Johnson N W, Vogt P, Resta A, De Padova P, Perez I, Muir D, Kurmaev E Z, Le Lay G and Moewes A 2014 Adv. Funct. Mater. 24 5253
[80] Chen M X and Weinert M 2014 Nano Lett. 14 5189
[81] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[82] Moon J S, Curtis D, Hu M, Wong D, McGuire C, Campbell P M, Jernigan G, Tedesco J L, VanMil B, Myers-Ward R, Eddy C and Gaskill D K 2009 IEEE Electron Dev. Lett. 30 650
[83] Kedzierski J, Pei L H, Healey P, Wyatt P W, Keast C L, Sprinkle M, Berger C and de Heer W A 2008 IEEE Trans. Electron Dev. 55 2078
[84] Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T and Kong J 2011 Nano Lett. 12 161
[85] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A and Crommie M F 2011 Nano Lett. 11 2291
[86] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and LeRoy B J 2011 Nat. Mater. 10 282
[87] Gannett W, Regan W, Watanabe K, Taniguchi T, Crommie M F and Zettl A 2011 Appl. Phys. Lett. 98 242105
[88] Dean C R, Young A F, MericI, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[89] Liu H, Gao J and Zhao J 2013 J. Phys. Chem. C 117 10353
[90] Li L, Wang X, Zhao X and Zhao M 2013 Phys. Lett. A 377 2628
[91] Gao N, Li J C and Jiang Q 2014 Chem. Phys. Lett. 592 222
[92] Gao N, Li J C and Jiang Q 2014 Phys. Chem. Chem. Phys. 16 11673
[93] Li L and Zhao M 2014 J. Phys. Chem. C 118 19129
[94] Scalise E, Houssa M, Cinquanta E, Grazianetti C, van den Broek B, Pourtois G, Stesmans A, Fanciulli M and Molle A 2014 2D Materials 1 011010
[95] Sattar S, Hoffmann R and Schwingenschlögl U 2014 New J. Phys. 16 065001
[96] Zhu J and Schwingenschlogl U 2014 ACS Appl. Mater. Interfaces 6 11675
[97] Li S, Wu Y, Liu W and Zhao Y 2014 Chem. Phys. Lett. 609 161
[98] Kokott S, Matthes L and Bechstedt F 2013 Phys. Status Solidi RRL 7 538
[99] Ding Y and Wang Y 2013 Appl. Phys. Lett. 103 043114
[100] Houssa M, van den Broek B, Scalise E, Pourtois G, Afanas'ev V V and Stesmans A 2013 Phys. Chem. Chem. Phys. 15 3702
[101] Bhattacharya A, Bhattacharya S and Das G P 2013 Appl. Phys. Lett. 103 123113
[102] Oostinga J B, Heersche H B, Liu X, Morpurgo A F and Vandersypen L M 2008 Nat. Mater. 7 151
[103] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[104] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[105] Morishita T, Nishio K and Mikami M 2008 Phys. Rev. B 77 081401
[106] Morishita T, Russo S P, Snook I K, Spencer M J S, Nishio K and Mikami M 2010 Phys. Rev. B 82 045419
[107] Bai J, Tanaka H and Zeng X C 2010 Nano Res. 3 694
[108] Lian C and Ni J 2013 AIP Adv. 3 052102
[109] Fu H, Zhang J, Ding Z, Li H and Meng S 2014 Appl. Phys. Lett. 104 131904
[110] Mohan B, Kumar A and Ahluwalia P K 2013 Physica E 53 233
[111] Kamal C, Chakrabarti A, Banerjee A and Deb S K 2013 J. Phys.: Condens. Matter 25 085508
[112] Liu J and Zhang W 2013 RSC Adv. 3 21943
[113] Liu H, Han N and Zhao J 2014 J. Phys.: Condens. Matter 26 475303
[114] Luo W, Ma Y, Gong X and Xiang H 2014 J. Am. Chem. Soc. 136 15992
[115] Ohta T 2006 Science 313 951
[116] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (Canada: John Wiley & Sons, Inc.)
[117] Han N, Liu H and Zhao J 2015 J. Supercond. Nov. Magn. 28 1755
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[5] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[6] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[7] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[8] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[9] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[10] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[11] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[12] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[13] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[14] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[15] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
No Suggested Reading articles found!