Special Issue:
TOPICAL REVIEW — Silicene
|
|
|
Modulation of electronic properties with external fields in silicene-based nanostructures |
Li Geng (李庚)a b, Zhao Yin-Chang (赵银昌)a b, Zheng Rui (郑蕊)a b, Ni Jun (倪军)a b, Wu Yan-Ning (吴言宁)c |
a State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
c School of Physics and Electronic Engineering, Fuyang Normal College, Fuyang 236037, China |
|
|
Abstract This work reviews our recent works about the density functional theory (DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional (2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric (ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional (1D) nanostructures, the silicene nanoribbons with sawtooth edges (SSiNRs) are more stable than the zigzag silicene nanoribbons (ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons (ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASiSLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASiSLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells.
|
Received: 02 March 2015
Revised: 13 May 2015
Accepted manuscript online:
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374175 and 11174171). |
Corresponding Authors:
Ni Jun
E-mail: junni@mail.tsinghua.edu.cn
|
Cite this article:
Li Geng (李庚), Zhao Yin-Chang (赵银昌), Zheng Rui (郑蕊), Ni Jun (倪军), Wu Yan-Ning (吴言宁) Modulation of electronic properties with external fields in silicene-based nanostructures 2015 Chin. Phys. B 24 087302
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
|
[3] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[4] |
Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
|
[5] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[6] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[7] |
Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[8] |
Stone F G A 1962 Hydrogen Compounds of the Group IV Elements (Englewood Cliffs: Prentice-Hall)
|
[9] |
Lew Yan Voon L C, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
|
[10] |
Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1
|
[11] |
DávilaM E, Xian L, Cahangirov S, Rubio A and Lay G Le 2014 New J. Phys. 16 095002
|
[12] |
Lebégue S and Eriksson O 2009 Phys. Rev. B 79 115409
|
[13] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[14] |
Tang Q and Zhou Z 2013 Prog. Mater. Sci. 58 1244
|
[15] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[16] |
Geim A K 2009 Science 324 1530
|
[17] |
Guo Z X, Ding J W and Gong X G 2012 Phys. Rev. B 85 235429
|
[18] |
Zheng R, Lin X and Ni J 2014 Appl. Phys. Lett. 105 092410
|
[19] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Carmen Asensio M, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
|
[20] |
Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
|
[21] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S B, Ealet B N and Augray B 2010 Appl. Phys. Lett. 97 223109
|
[22] |
Jose Deepthi and Datta Ayan 2014 Acc. Chem. Res. 47 2
|
[23] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[24] |
Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
|
[25] |
Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 10 1038
|
[26] |
Tahir M and Schwingenschlögl U 2012 Sci. Rep. 3 1075
|
[27] |
Jose D and Datta A 2014 Acc. Chem. Res. 47 593
|
[28] |
Shao Z G, Ye X S, Yang L and Wang C L 2013 J. Appl. Phys. 114 093712
|
[29] |
Ezawa M 2012 New J. Phys. 14 033003
|
[30] |
Tabert C J and Nicol E 2013 Phys. Rev. Lett. 110 197402
|
[31] |
Padova P D, Quaresima C, Perfetti P, Olivieri B, Leandri C, Aufray B, Vizzini S and Lay G L 2008 Nano Lett. 8 271
|
[32] |
Padova P D, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G L 2010 Appl. Phys. Lett. 96 261905
|
[33] |
Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Lay G L 2010 Appl. Phys. Lett. 96 183102
|
[34] |
Padova P D, Quaresima C, Olivieri B, Perfetti P and Lay G L 2011 J. Phys. D: Appl. Phys. 44 312001
|
[35] |
Léandri C, Oughaddou H, Aufray B, Gay J M, Lay G L, Ranguis A and Garreau Y 2007 Surf. Sci. 601 262-267
|
[36] |
Chen Y W, Tang Y H, Pei L Z and Guo C 2005 Adv. Mater. 17 564
|
[37] |
Yang X and Ni J 2005 Phys. Rev. B 72 195426
|
[38] |
Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
|
[39] |
Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
|
[40] |
Hod O, Barone V, Peralta J E and Scuseria G E 2007 Nano Lett. 7 2295
|
[41] |
Barone V, Hod O and Scuseria G E 2006 Nano Lett. 6 2748
|
[42] |
Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
|
[43] |
Yang X F, Liu Y S, Feng J F, Wang X F, Zhang C W and Chi F 2014 Appl. Phys. Lett. 116 124312
|
[44] |
Vargiamidis V, Vasilopoulos P and Hai G Q 2014 J. Phys.: Condens. Matter 26 345303
|
[45] |
Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122
|
[46] |
Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R, Xu C, Zhou J, Gao Z X and Lu J 2012 Nano 07 1250037
|
[47] |
Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z and Lu J 2012 Nanoscale 4 3111
|
[48] |
Gao J, Zhang J, Liu H, Zhang Q and Zhao J 2013 Nanoscale 5 9785
|
[49] |
Lian C, Yang Z and Ni J 2013 Chem. Phys. Lett. 77 561
|
[50] |
Fang D Q, Zhang Y and Zhang S L 2014 New J. Phys. 16 115006
|
[51] |
Feng J, Liu Y, Wang H, Zhao J, Cai Q and Wang X 2014 Comput. Mater. Sci. 87 218
|
[52] |
Chan K T, Neaton J B and Cohen M L 2008 Phys. Rev. B 77 235430
|
[53] |
Profeta G, Calandra M and Mauri F 2012 Nat. Phys. 8 131
|
[54] |
Er Hong Song, Sung Ho Yoo, Jae Joon Kim, Shiau Wu Lai, Qing Jiangb and Sung Oh Cho 2014 Phys. Chem. Chem. Phys. 16 23985
|
[55] |
Ataca C, Aktürk E and Ciraci S 2009 Phys. Rev. B 79 041406(R)
|
[56] |
Ao Z M and Peeters F M 2010 Phys. Rev. B 81 205406
|
[57] |
Lu Y H, Zhou M, Zhang C and Feng Y P 2009 J. Phys. Chem. C 113 20156
|
[58] |
Li Y, Zhou Z, Yu G, Chen W and Chen Z 2010 J. Phys. Chem. C 114 6250
|
[59] |
Lu P, Zhang Z H and Guo W L 2009 Phys. Lett. A 373 3354
|
[60] |
Nordlund K, Keinoned J and Mattila T 1996 Phys. Rev. Lett. 77 699
|
[61] |
Topsakal M, Aktürk E, Sevincli H and Criaci S 2008 Phys. Rev. B 78 235435
|
[62] |
Nakamura J, Toshihiro N and Akiko N 2012 Phys. Rev. B 72 205429
|
[63] |
Fang D Q, Zhang S L and Xu H 2013 RSC Adv. 3 24075
|
[64] |
Liu H, Han N and Zhao J 2014 J. Phys.: Condens. Matter 26 475303
|
[65] |
Liu H, Han N and Zhao J 2013 J. Phys. Chem. C 117 10353
|
[66] |
Lieb E H 1989 Phys. Rev. Lett. 62 1201
|
[67] |
Yu D, Lupton E M, Gao H J, Zhang C and Liu F 2008 Nano Res. 1 497
|
[68] |
Zhao Y C and Ni J 2014 Phys. Chem. Chem. Phys. 16 15477
|
[69] |
Wang Z F, Jin S and Liu F 2013 Phys. Rev. Lett. 111 096803
|
[70] |
Yu D, Lupton E M, Gao H J, Zhang C and Liu F 2008 Nano Res. 1 497
|
[71] |
Liu W, Wang Z F, Shi Q W, Yang J and Liu F 2009 Phys. Rev. B 80 233405
|
[72] |
Rasuli R, Rafii-Tabar H and Iraji zad A 2010 Phys. Rev. B 81 125409
|
[73] |
Li Y, Jiang X, Liu Z and Liu Z 2010 Nano Res. 3 545
|
[74] |
Cui H J, Sheng X L, Yan Q B, Zheng Q R and Su G 2013 Phys. Chem. Chem. Phys. 15 8179
|
[75] |
Rondinelli J, Stengel M and Spaldin N 2008 Nat. Nanotechnol. 3 46
|
[76] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[77] |
Fiebig M J 2005 J. Phys. D: Appl. Phys. 38 R123
|
[78] |
Wu Y, Zhang K, Huang Y, Wu S, Zhu H, Cheng P and Ni J 2014 Eur. Phys. J. B 87 94
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|