Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087302    DOI: 10.1088/1674-1056/24/8/087302
Special Issue: TOPICAL REVIEW — Silicene
TOPICAL REVIEW—Silicene Prev   Next  

Modulation of electronic properties with external fields in silicene-based nanostructures

Li Geng (李庚)a b, Zhao Yin-Chang (赵银昌)a b, Zheng Rui (郑蕊)a b, Ni Jun (倪军)a b, Wu Yan-Ning (吴言宁)c
a State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
c School of Physics and Electronic Engineering, Fuyang Normal College, Fuyang 236037, China
Abstract  

This work reviews our recent works about the density functional theory (DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional (2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric (ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional (1D) nanostructures, the silicene nanoribbons with sawtooth edges (SSiNRs) are more stable than the zigzag silicene nanoribbons (ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons (ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASiSLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASiSLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells.

Keywords:  electric field      magnetoelectric effect      spin-semiconductor      quantum well  
Received:  02 March 2015      Revised:  13 May 2015      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374175 and 11174171).

Corresponding Authors:  Ni Jun     E-mail:  junni@mail.tsinghua.edu.cn

Cite this article: 

Li Geng (李庚), Zhao Yin-Chang (赵银昌), Zheng Rui (郑蕊), Ni Jun (倪军), Wu Yan-Ning (吴言宁) Modulation of electronic properties with external fields in silicene-based nanostructures 2015 Chin. Phys. B 24 087302

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[4] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[5] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[6] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[7] Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[8] Stone F G A 1962 Hydrogen Compounds of the Group IV Elements (Englewood Cliffs: Prentice-Hall)
[9] Lew Yan Voon L C, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
[10] Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1
[11] DávilaM E, Xian L, Cahangirov S, Rubio A and Lay G Le 2014 New J. Phys. 16 095002
[12] Lebégue S and Eriksson O 2009 Phys. Rev. B 79 115409
[13] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[14] Tang Q and Zhou Z 2013 Prog. Mater. Sci. 58 1244
[15] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[16] Geim A K 2009 Science 324 1530
[17] Guo Z X, Ding J W and Gong X G 2012 Phys. Rev. B 85 235429
[18] Zheng R, Lin X and Ni J 2014 Appl. Phys. Lett. 105 092410
[19] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Carmen Asensio M, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[20] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
[21] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S B, Ealet B N and Augray B 2010 Appl. Phys. Lett. 97 223109
[22] Jose Deepthi and Datta Ayan 2014 Acc. Chem. Res. 47 2
[23] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[24] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[25] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 10 1038
[26] Tahir M and Schwingenschlögl U 2012 Sci. Rep. 3 1075
[27] Jose D and Datta A 2014 Acc. Chem. Res. 47 593
[28] Shao Z G, Ye X S, Yang L and Wang C L 2013 J. Appl. Phys. 114 093712
[29] Ezawa M 2012 New J. Phys. 14 033003
[30] Tabert C J and Nicol E 2013 Phys. Rev. Lett. 110 197402
[31] Padova P D, Quaresima C, Perfetti P, Olivieri B, Leandri C, Aufray B, Vizzini S and Lay G L 2008 Nano Lett. 8 271
[32] Padova P D, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G L 2010 Appl. Phys. Lett. 96 261905
[33] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Lay G L 2010 Appl. Phys. Lett. 96 183102
[34] Padova P D, Quaresima C, Olivieri B, Perfetti P and Lay G L 2011 J. Phys. D: Appl. Phys. 44 312001
[35] Léandri C, Oughaddou H, Aufray B, Gay J M, Lay G L, Ranguis A and Garreau Y 2007 Surf. Sci. 601 262-267
[36] Chen Y W, Tang Y H, Pei L Z and Guo C 2005 Adv. Mater. 17 564
[37] Yang X and Ni J 2005 Phys. Rev. B 72 195426
[38] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[39] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[40] Hod O, Barone V, Peralta J E and Scuseria G E 2007 Nano Lett. 7 2295
[41] Barone V, Hod O and Scuseria G E 2006 Nano Lett. 6 2748
[42] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
[43] Yang X F, Liu Y S, Feng J F, Wang X F, Zhang C W and Chi F 2014 Appl. Phys. Lett. 116 124312
[44] Vargiamidis V, Vasilopoulos P and Hai G Q 2014 J. Phys.: Condens. Matter 26 345303
[45] Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122
[46] Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R, Xu C, Zhou J, Gao Z X and Lu J 2012 Nano 07 1250037
[47] Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z and Lu J 2012 Nanoscale 4 3111
[48] Gao J, Zhang J, Liu H, Zhang Q and Zhao J 2013 Nanoscale 5 9785
[49] Lian C, Yang Z and Ni J 2013 Chem. Phys. Lett. 77 561
[50] Fang D Q, Zhang Y and Zhang S L 2014 New J. Phys. 16 115006
[51] Feng J, Liu Y, Wang H, Zhao J, Cai Q and Wang X 2014 Comput. Mater. Sci. 87 218
[52] Chan K T, Neaton J B and Cohen M L 2008 Phys. Rev. B 77 235430
[53] Profeta G, Calandra M and Mauri F 2012 Nat. Phys. 8 131
[54] Er Hong Song, Sung Ho Yoo, Jae Joon Kim, Shiau Wu Lai, Qing Jiangb and Sung Oh Cho 2014 Phys. Chem. Chem. Phys. 16 23985
[55] Ataca C, Aktürk E and Ciraci S 2009 Phys. Rev. B 79 041406(R)
[56] Ao Z M and Peeters F M 2010 Phys. Rev. B 81 205406
[57] Lu Y H, Zhou M, Zhang C and Feng Y P 2009 J. Phys. Chem. C 113 20156
[58] Li Y, Zhou Z, Yu G, Chen W and Chen Z 2010 J. Phys. Chem. C 114 6250
[59] Lu P, Zhang Z H and Guo W L 2009 Phys. Lett. A 373 3354
[60] Nordlund K, Keinoned J and Mattila T 1996 Phys. Rev. Lett. 77 699
[61] Topsakal M, Aktürk E, Sevincli H and Criaci S 2008 Phys. Rev. B 78 235435
[62] Nakamura J, Toshihiro N and Akiko N 2012 Phys. Rev. B 72 205429
[63] Fang D Q, Zhang S L and Xu H 2013 RSC Adv. 3 24075
[64] Liu H, Han N and Zhao J 2014 J. Phys.: Condens. Matter 26 475303
[65] Liu H, Han N and Zhao J 2013 J. Phys. Chem. C 117 10353
[66] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[67] Yu D, Lupton E M, Gao H J, Zhang C and Liu F 2008 Nano Res. 1 497
[68] Zhao Y C and Ni J 2014 Phys. Chem. Chem. Phys. 16 15477
[69] Wang Z F, Jin S and Liu F 2013 Phys. Rev. Lett. 111 096803
[70] Yu D, Lupton E M, Gao H J, Zhang C and Liu F 2008 Nano Res. 1 497
[71] Liu W, Wang Z F, Shi Q W, Yang J and Liu F 2009 Phys. Rev. B 80 233405
[72] Rasuli R, Rafii-Tabar H and Iraji zad A 2010 Phys. Rev. B 81 125409
[73] Li Y, Jiang X, Liu Z and Liu Z 2010 Nano Res. 3 545
[74] Cui H J, Sheng X L, Yan Q B, Zheng Q R and Su G 2013 Phys. Chem. Chem. Phys. 15 8179
[75] Rondinelli J, Stengel M and Spaldin N 2008 Nat. Nanotechnol. 3 46
[76] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[77] Fiebig M J 2005 J. Phys. D: Appl. Phys. 38 R123
[78] Wu Y, Zhang K, Huang Y, Wu S, Zhu H, Cheng P and Ni J 2014 Eur. Phys. J. B 87 94
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[4] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[5] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[8] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[9] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[10] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[11] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[12] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[13] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[14] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[15] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
No Suggested Reading articles found!