Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024207    DOI: 10.1088/1674-1056/25/2/024207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of LD in-band direct-pumping side surface polished micro-rod Nd:YVO4 laser

Wen-Qi Zhang(张文启), Fei Wang(王飞), Qiang Liu(柳强), Ma-Li Gong(巩马理)
State Key Laboratory of Tribology, Center for Photonics and Electronics, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  To diminish the thermal load, two ways, that is, in-band direct pumping and micro-rod crystal, could be adopted at the same time. The efficiency of LD in-band direct-pumping side surface polished micro-rod Nd:YVO4 laser is numerically analyzed. By optimizing parameters such as crystal length, laser mode radius, pump beam radius, doping concentration and crystal cross-section size, the overall efficiency can reach over 50%. It is found that with micro-rod crystal implemented in the laser oscillator, high overall efficiency LD in-band direct-pumping Nd:YVO4 laser could be realized. High efficiency combined with low thermal load makes this laser an outstanding scheme for building high-power Nd:YVO4 lasers.
Keywords:  diode-pumped lasers      design of specific laser systems      efficiency  
Received:  08 April 2015      Revised:  11 August 2015      Accepted manuscript online: 
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.By (Design of specific laser systems)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Corresponding Authors:  Ma-Li Gong     E-mail:  gongml@mail.tsinghua.edu.cn

Cite this article: 

Wen-Qi Zhang(张文启), Fei Wang(王飞), Qiang Liu(柳强), Ma-Li Gong(巩马理) Design of LD in-band direct-pumping side surface polished micro-rod Nd:YVO4 laser 2016 Chin. Phys. B 25 024207

[1] Li X, Li G Q, Zhao S Z, Wang X M, Yin L, Huang H and Ma X M 2012 Laser Phys. 22 673
[2] Du G L, Li G Q, Zhao S Z, Li T, Yang K J and Li X 2011 Laser Phys. 21 1880
[3] Chang L, Yang C, Yi X J, Ai Q K, Chen L Y, Chen M, Li G, Yang J H and Ma Y F 2012 Laser Phys. 22 1369
[4] Sato Y, Taira T, Pavel N and Lupei V 2003 Appl. Phys. Lett. 82 844
[5] McDonagh L, Wallenstein R, Knappe R and Nebel A 2006 Opt. Lett. 31 3297
[6] Chen Y F, Lan Y P and Wang S C 2000 Opt. Lett. 25 1016
[7] Li T, Zhuo Z, Li X, Yang H and Zhang Y 2007 Chin. Opt. Lett. 5 175
[8] Zhuo Z, Li T, Li X and Yang H 2007 Chin. Opt. Lett. 5 S13
[9] Millar P, Kemp A J and Burns D 2009 Opt. Lett. 34 782
[10] Zhu P, Li D, Hu P, Schell A, Shi P, Haas C R, Wu N and Du K 2008 Opt. Lett. 33 1930
[11] Piehler S, Délen X, Rumpel M, Didierjean J, Aubry N, Graf T, Balembois F, Georges P and Ahmed M A 2013 Opt. Express 21 11376
[12] Délen X, Zaouter Y, Martial I, Aubry N, Didierjean J, Hönninger C, Mottay E, Balembois F and Georges P 2013 Opt. Lett. 38 109
[13] Délen X, Piehler S, Didierjean J, Aubry N, Voss A, Ahmed M A, Graf T, Balembois F and Georges P 2012 Opt. Lett. 37 2898
[14] Délen X, Martial I, Didierjean J, Aubry N, Sangla D, Balembois F and Georges P 2011 Appl. Phys. B: Lasers and Optics 104 1
[15] Koechner W 2006 Solid-state laser engineering, 6nd edn. (New York: Springer) p. 105
[16] Laporta P and Brussard M 1991 IEEE J. Quantum Electron. 27 2319
[17] Didierjean J, Castaing M, Balembois F, Georges P, Perrodin D, Fourmigué J M, Lebbou K, Brenier A and Tillement O 2006 Opt. Lett. 31 3468
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[3] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[4] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[5] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[6] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[7] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[8] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[9] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[10] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[13] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[14] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[15] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
No Suggested Reading articles found!