|
|
Temperature dependence of multi-jump magnetic switching process in epitaxial Fe/MgO (001) films |
Hu Bo (胡泊), He Wei (何为), Ye Jun (叶军), Tang Jin (汤进), Zhang Yong-Sheng (张永圣), Syed Sheraz Ahmad, Zhang Xiang-Qun (张向群), Cheng Zhao-Hua (成昭华) |
State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO (001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300 K to 80 K, the measured three-jump hysteresis loops turn into two-jump loops. The temperature dependence of the fourfold in-plane magnetic anisotropy constant K1, domain wall pinning energy, and an additional uniaxial magnetic anisotropy constant KU are responsible for this transformation. The strengths of K1 and domain wall pinning energy increase with decreasing temperature, but KU remains unchanged. Moreover, magnetization reversal mechanisms, with either two successive or two separate 90° domain wall propagation, are introduced to explain the multi-jump magnetic switching process in epitaxial Fe/MgO(001) films at different temperatures.
|
Received: 19 March 2015
Revised: 14 April 2015
Accepted manuscript online:
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403, 2011CB921801, and 2012CB933102) and the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 11274361). |
Corresponding Authors:
Cheng Zhao-Hua
E-mail: zhcheng@aphy.iphy.ac.cn
|
Cite this article:
Hu Bo (胡泊), He Wei (何为), Ye Jun (叶军), Tang Jin (汤进), Zhang Yong-Sheng (张永圣), Syed Sheraz Ahmad, Zhang Xiang-Qun (张向群), Cheng Zhao-Hua (成昭华) Temperature dependence of multi-jump magnetic switching process in epitaxial Fe/MgO (001) films 2015 Chin. Phys. B 24 077502
|
[1] |
Johnson M T, Bloemen P J H, Den Broeder F J A and Vries J J D 1996 Rep. Prog. Phys. 59 1409
|
[2] |
Gould C, Pappert K, Schmidt G and Molenkamp L W 2007 Adv. Mater. 19 323
|
[3] |
Gould C, Rüster C, Jungwirth T, Girgis E, Schott G M, Giraud R, Brunner K, Schmidt G and Molenkamp L W 2004 Phys. Rev. Lett. 93 117203
|
[4] |
Tian C S, Qian D, Wu D, He R H, Wu Y Z, Tang W X, Yin L F, Shi Y S, Dong G S, Jin X F, Jiang X M, Liu F Q, Qian H J, Sun K, Wang L M, Rossi G, Qiu Z Q and Shi J 2005 Phys. Rev. Lett. 94 137210
|
[5] |
Wu Y Z, Won C and Qiu Z Q 2002 Phys. Rev. B 65 184419
|
[6] |
Cherifi S, Hertel R, Locatelli A, Watanabe Y, Potdevin G, Ballestrazzi A, Balboni M and Heun S 2007 Appl. Phys. Lett. 91 092502
|
[7] |
Zhao H B, Talbayev D, Lüpke G, Hanbicki A T, Li C H, van't Erve M J, Kioseoglou G and Jonker B T 2005 Phys. Rev. Lett. 95 137202
|
[8] |
Fan Y, Zhao H B, Lüpke G, Hanbicki A T, Li C H and Jonker B T 2012 Phys. Rev. B 85 165311
|
[9] |
Jeong Y, Lee H, Lee S, Yoo T, Lee S, Liu X and Furdyna J K 2014 Solid State Commun. 200 1
|
[10] |
Caminale M, Moroni R, Torelli P, Lin W C, Canepa M, Mattera L and Bisio F 2014 Phys. Rev. Lett. 112 037201
|
[11] |
Zhan Q F, Vandezande S, Haesendonck C V and Temst K 2007 Appl. Phys. Lett. 91 122510
|
[12] |
Zhan Q F, Vandezande S, Temst K and Haesendonck C V 2009 New J. Phys. 11 063003
|
[13] |
Tripathy D, Vavassori P, Porro J M, Adeyeye A O and Singh N 2010 Appl. Phys. Lett. 97 042512
|
[14] |
Ye J, He W, Wu Q, Liu H L, Zhang X Q, Chen Z Y and Cheng Z H 2013 Sci. Rep. 3 2148
|
[15] |
Daboo C, Hicken R J, Gu E, Gester M, Gray S J, Eley D E P, Ahmad E, Bland J A C, Ploessl R and Chapman J N 1995 Phys. Rev. B 51 15964
|
[16] |
Zhan Q F, Vandezande S, Temst K and Haesendonck C V 2009 Phys. Rev. B 80 094416
|
[17] |
Krivorotov I N, Leighton C, Nogués J, Schuller Ivan K and Dan Dahlberg E 2002 Phys. Rev. B 65 100402
|
[18] |
Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett. 98 262506
|
[19] |
Li J, Jin E, Son H, Tan A, Cao W N, Hwang C and Qiu Z Q 2012 Rev. Sci. Instrum. 83 033906
|
[20] |
Gruyters M 2006 Phys. Rev. B 73 014404
|
[21] |
Cowburn R P, Gray S J, FerréJ, Bland J A C and Miltat J 1995 J. Appl. Phys. 78 7210
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|