Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070303    DOI: 10.1088/1674-1056/24/7/070303
GENERAL Prev   Next  

A compact Einstein–Podolsky–Rosen entangled light source

Wang Ya-Jun (王雅君), Yang Wen-Hai (杨文海), Zheng Yao-Hui (郑耀辉), Peng Kun-Chi (彭堃墀)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  We present a stable entangled light source that integrates the pump laser, entanglement generator, detectors, and electronic control systems. By optimizing the design of the mechanical elements and the optical path, the size of the source is minimized, and the quantum correlations over 6 dB can be directly provided by the entangled source. The compact and stable entangled light source is suitable for practical applications in quantum information science and technology. The presented protocol provides a useful reference for manufacturing products of bright entangled light sources.
Keywords:  compact entangled light source      Bell-state detection  
Received:  15 November 2014      Revised:  02 February 2015      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  07.60.-j (Optical instruments and equipment)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61227015) and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.
Corresponding Authors:  Zheng Yao-Hui     E-mail:  yhzheng@sxu.edu.cn

Cite this article: 

Wang Ya-Jun (王雅君), Yang Wen-Hai (杨文海), Zheng Yao-Hui (郑耀辉), Peng Kun-Chi (彭堃墀) A compact Einstein–Podolsky–Rosen entangled light source 2015 Chin. Phys. B 24 070303

[1] Menicucci N C, Loock P V, Gu M and Weedbrook C 2006 Phys. Rev. Lett. 97 110501
[2] Deng L, Cheng A X and Zhang J S 2011 Chin. Phys. B 20 110304
[3] Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D and Peng K C 2013 Nat. Commun. 4 2828
[4] Madsen L S, Usenko V C, Lassen M, Fillip R and Andersen U L 2012 Nat. Commun. 3 1083
[5] He G Q and Zeng G H 2006 Chin. Phys. 15 2252
[6] Zhang Y Q, Jin X R and Zhang S 2006 Chin. Phys. 15 2252
[7] Jia X J, Su X L, Pan Q, Gao J R, Xie C D and Peng K C 2004 Phys. Rev. Lett. 93 250503
[8] Sheng Y B, Zhou L, Cheng W W, Gong L L, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
[9] Martin A, Alibart O, Micheli M P, Ostrowsky D B and Tanzilli S 2012 New J. Phys. 14 025002
[10] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[11] Yonezawa H, Aoki T and Furusawa A 2004 Nature 431 430
[12] Zhang T C, Goh K W, Chou C W, Lodahl P and Kimble H J 2003 Phys. Rev. A 67 033802
[13] Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
[14] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[15] Silberhorn C, Lam P K, WeiB O, Konig F, Korolkova N and Leuchs G 2001 Phys. Rev. Lett. 86 4267
[16] Bowen W P, Treps N, Schnabel R and Lam P K 2002 Phys. Rev. Lett. 89 253601
[17] Villar A S, Cruz L S, Cassemiro K N, Martinelli M and Nussenzveig P 2005 Phys. Rev. Lett. 95 243603
[18] Keller G, Auria V D, Treps N, Coudreau T, Laurat J and Fabre C 2008 Opt. Express 16 9351
[19] Zheng Y H, Wu Z Q, Huo M R and Zhou H J 2013 Chin. Phys. B 22 094206
[20] Eberle T, Handchen V and Schnabel R 2013 Opt. Express 21 11546
[21] Wang Y, Shen H, Jin X L, Su X L and C D Xie 2010 Opt. Express 18 6149
[22] Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D and Peng K C 2012 Opt. Lett. 37 5178
[23] Vahlbruch H, Khalaidovski A, Lastzka N, Graf C, Danzmann K and Schnabel R 2010 Class. Quantum. Grav. 27 084027
[24] Khalaidovski A, Vahlbruch H, Lastzka N, Graf C, Danzmann K, Grote H and Schnabel R 2012 Class. Quantum. Grav. 29 075001
[25] Zhang J and Peng K C 2000 Phys. Rev. A 62 064302
[26] Chen H X and Zhang J 2009 Phys. Rev. A 79 063826
[27] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
[28] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[5] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[6] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[7] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[8] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[12] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[13] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[14] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[15] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
No Suggested Reading articles found!