|
|
A compact Einstein–Podolsky–Rosen entangled light source |
Wang Ya-Jun (王雅君), Yang Wen-Hai (杨文海), Zheng Yao-Hui (郑耀辉), Peng Kun-Chi (彭堃墀) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We present a stable entangled light source that integrates the pump laser, entanglement generator, detectors, and electronic control systems. By optimizing the design of the mechanical elements and the optical path, the size of the source is minimized, and the quantum correlations over 6 dB can be directly provided by the entangled source. The compact and stable entangled light source is suitable for practical applications in quantum information science and technology. The presented protocol provides a useful reference for manufacturing products of bright entangled light sources.
|
Received: 15 November 2014
Revised: 02 February 2015
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
07.60.-j
|
(Optical instruments and equipment)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61227015) and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China. |
Corresponding Authors:
Zheng Yao-Hui
E-mail: yhzheng@sxu.edu.cn
|
Cite this article:
Wang Ya-Jun (王雅君), Yang Wen-Hai (杨文海), Zheng Yao-Hui (郑耀辉), Peng Kun-Chi (彭堃墀) A compact Einstein–Podolsky–Rosen entangled light source 2015 Chin. Phys. B 24 070303
|
[1] |
Menicucci N C, Loock P V, Gu M and Weedbrook C 2006 Phys. Rev. Lett. 97 110501
|
[2] |
Deng L, Cheng A X and Zhang J S 2011 Chin. Phys. B 20 110304
|
[3] |
Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D and Peng K C 2013 Nat. Commun. 4 2828
|
[4] |
Madsen L S, Usenko V C, Lassen M, Fillip R and Andersen U L 2012 Nat. Commun. 3 1083
|
[5] |
He G Q and Zeng G H 2006 Chin. Phys. 15 2252
|
[6] |
Zhang Y Q, Jin X R and Zhang S 2006 Chin. Phys. 15 2252
|
[7] |
Jia X J, Su X L, Pan Q, Gao J R, Xie C D and Peng K C 2004 Phys. Rev. Lett. 93 250503
|
[8] |
Sheng Y B, Zhou L, Cheng W W, Gong L L, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
|
[9] |
Martin A, Alibart O, Micheli M P, Ostrowsky D B and Tanzilli S 2012 New J. Phys. 14 025002
|
[10] |
Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
|
[11] |
Yonezawa H, Aoki T and Furusawa A 2004 Nature 431 430
|
[12] |
Zhang T C, Goh K W, Chou C W, Lodahl P and Kimble H J 2003 Phys. Rev. A 67 033802
|
[13] |
Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
|
[14] |
Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
|
[15] |
Silberhorn C, Lam P K, WeiB O, Konig F, Korolkova N and Leuchs G 2001 Phys. Rev. Lett. 86 4267
|
[16] |
Bowen W P, Treps N, Schnabel R and Lam P K 2002 Phys. Rev. Lett. 89 253601
|
[17] |
Villar A S, Cruz L S, Cassemiro K N, Martinelli M and Nussenzveig P 2005 Phys. Rev. Lett. 95 243603
|
[18] |
Keller G, Auria V D, Treps N, Coudreau T, Laurat J and Fabre C 2008 Opt. Express 16 9351
|
[19] |
Zheng Y H, Wu Z Q, Huo M R and Zhou H J 2013 Chin. Phys. B 22 094206
|
[20] |
Eberle T, Handchen V and Schnabel R 2013 Opt. Express 21 11546
|
[21] |
Wang Y, Shen H, Jin X L, Su X L and C D Xie 2010 Opt. Express 18 6149
|
[22] |
Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D and Peng K C 2012 Opt. Lett. 37 5178
|
[23] |
Vahlbruch H, Khalaidovski A, Lastzka N, Graf C, Danzmann K and Schnabel R 2010 Class. Quantum. Grav. 27 084027
|
[24] |
Khalaidovski A, Vahlbruch H, Lastzka N, Graf C, Danzmann K, Grote H and Schnabel R 2012 Class. Quantum. Grav. 29 075001
|
[25] |
Zhang J and Peng K C 2000 Phys. Rev. A 62 064302
|
[26] |
Chen H X and Zhang J 2009 Phys. Rev. A 79 063826
|
[27] |
Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
|
[28] |
Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|