Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067101    DOI: 10.1088/1674-1056/24/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, and magnetic properties in FeAlAun (n=1-6) clusters: A first-principles study

Zhang Jian-Fei (张健飞)a, Zhang Meng (张孟)a, Zhao Yan-Wei (赵艳伟)a, Zhang Hong-Yu (张红雨)a, Zhao Li-Na (赵丽娜)b, Luo You-Hua (罗有华)a
a Department of Physics, East China University of Science and Technology, Shanghai 200237, China;
b CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
Abstract  The geometries, electronic and magnetic properties of the trimetallic clusters FeAlAun (n=1–6) are systematically investigated using density functional theory (DFT). A number of new isomers are obtained to probe the structural evolutions. All doped clusters show larger relative binding energies than pure Aun+2 partners, indicating that doping with Fe and Al atoms can stabilize the Aun clusters. The highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gaps, vertical ionization potentials and vertical electron affinities are also studied and compared with those of pure gold clusters. Magnetism calculations demonstrate that the magnetic moments of FeAlAun clusters each show a pronounced odd–even oscillation with the number of Au atoms.
Keywords:  density functional theory      structural properties      gold properties  
Received:  18 September 2014      Revised:  02 December 2014      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204079, 11304096, and 11404333) and the Natural Science Foundation of Shanghai, China (Grant No. 12ZR1407000).
Corresponding Authors:  Zhang Meng, Luo You-Hua     E-mail:  mzhang@ecust.edu.cn;yhluo@ecust.edu.cn
About author:  71.15.Mb; 31.10.+z; 36.40.Cg

Cite this article: 

Zhang Jian-Fei (张健飞), Zhang Meng (张孟), Zhao Yan-Wei (赵艳伟), Zhang Hong-Yu (张红雨), Zhao Li-Na (赵丽娜), Luo You-Hua (罗有华) Structural, electronic, and magnetic properties in FeAlAun (n=1-6) clusters: A first-principles study 2015 Chin. Phys. B 24 067101

[1] Haruta M 1997 Catal. Today 36 153
[2] Cleveland C L, Landman U, Schaaff T G, Shafigullin M N, Stephens P W and Whetten R L 1997 Phys. Rev. Lett. 79 1873
[3] Yu Y J, Yang C L, An Y P and Wang H Y 2011 Acta Phys. Sin. 60 023102 (in Chinese)
[4] Daniel M C and Astruc D 2004 Chem. Rev. 104 293
[5] Pyykkö P 2007 Nat. Nanotechnol. 2 273
[6] Huang W and Wang L S 2009 Phys. Rev. Lett. 102 153401
[7] Assadollahzadeh B and Schwerdtfeger P 2009 J. Chem. Phys. 131 064306
[8] De H S, Krishnamurty S, Mishra D and Pal S 2011 J. Phys. Chem. C 115 17278
[9] Fernández E M, Soler J M, Garzón I L and Balbás L C 2004 Phys. Rev. B 70 165403
[10] Gruene P, Rayner D M, Redlich B, van der Meer A F G, Lyon J T, Meijer G and Fielicke A 2008 Science 321 674
[11] Hber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules Litton (New York: Van Nostrand Reinhold) pp. 8-689
[12] Simard B and Hackett P A 1990 J. Mol. Spectrosc. 142 310
[13] Ho J, Ervin K M and Lineberger W C 1990 J. Chem. Phys. 93 6987
[14] Taylor K J, Pettitte-Hall C L, Cheshnovsky O and Smalley R E 1992 J. Chem. Phys. 96 3319
[15] Jackschath C, Rabin I and Schulze W 1992 Ber. Bunsenges. Phys. Chem. 96 1200
[16] Barnett R N, Cleveland C I, Häkkinen H, Luedtke W D, Yamouleas C and Landsman U 1999 Eur. Phys. J. D 9 95
[17] Häkkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
[18] Gao Y, Huang W, Woodford J, Wang L S and Zeng X C 2009 J. Am. Chem. Soc. 131 9484
[19] Gingerich K A and Blue G D 1973 J. Chem. Phys. 59 185
[20] Wang L M, Pal R, Huang W, Li X, Zeng X C and Wang L S 2010 J. Chem. Phys. 132 114306
[21] David J, Guerra D, Hadad C Z and Restrepo A 2010 J. Phys. Chem. A 114 10726
[22] Ghanty T K, Banerjee A and Chakrabarti A 2010 J. Phys. Chem. C 114 20
[23] Nhat P V and Nguyen M T 2011 Phys. Chem. Chem. Phys. 13 16254
[24] Tian W Q, Ge M, Gu F, Yamada T and Aoki Y 2006 J. Phys. Chem. A 110 6285
[25] Tian W Q, Ge M, Gu F and Aoki Y 2005 J. Phys. Chem. A 109 9860
[26] Neukermans S, Janssens E, Tanaka H, Silverans R E and Lievens P 2003 Phys. Rev. Lett. 90 033401
[27] Tanaka H, Neukermans S, Janssens E, Silverans R E and Lievens P 2003 J. Chem. Phys. 119 7115
[28] Janssens E, Tanaka H, Neukermans S, Silverans R E and Lievens P 2004 Phys. Rev. B 69 085402
[29] Li X, Kiran B, Cui L F and Wang L S 2005 Phys. Rev. Lett. 95 253401
[30] Kumar V 2009 Phys. Rev. B 79 085423
[31] Kiran B, Li X, Zhai H J, Cui L F and Wang L S 2004 Angew. Chem. Int. Ed. 43 2125
[32] Kiran B, Li X, Zhai H J and Wang L S 2006 J. Chem. Phys. 125 133204
[33] Li X, Kiran B and Wang L S 2005 J. Phys. Chem. A 109 4366
[34] Sun L S, Zhang A C, Xiang J, Guo P H, Liu Z C and Su S 2011 Acta Phys. Sin. 60 073103 (in Chinese)
[35] Majumder C, Kandalam A K and Jena P 2006 Phys. Rev. B 74 205437
[36] Pal R, Wang L M, Huang W, Wang L S and Zeng X C 2009 J. Am. Chem. Soc. 131 3396
[37] Zhang X H, Dong J C, Wang Y, Li L and Li H 2013 J. Phys. Chem. C 117 12958
[38] Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2009 Chin. Phys. B 19 043103
[39] Zhang M, Feng X J, Zhao L X, Zhang H Y and Luo Y H 2012 Chin. Phys. B 21 056102
[40] Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
[41] Zhang M, Yang S B, Feng X J, Zhao L X, Zhang H Y and Luo Y H 2013 Eur. Phys. J. D 67 11
[42] Delley B 1990 J. Chem. Phys. 92 508
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Wang J L, Wang G H and Zhao J J 2002 Phys. Rev. B 66 035418
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!