Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 064206    DOI: 10.1088/1674-1056/24/6/064206

Electromagnetic field quantization and input-output relation for anisotropic magnetodielectric metamaterial

Dong Yun-Xia (董云霞), Liu Chun-Ying (刘春颖)
School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Abstract  A phenomenological quantization of electromagnetic field is introduced in the presence of the anisotropic magnetodielectric metamaterial. For a single layer structure with the anisotropic metamaterial, input–output relations of quantized radiation are derived using the Green-function approach. Based on these relations, the reflectance of the linearly polarized wave through this structure is calculated. The results show that different resonant peaks of reflectance appear for different polarized waves and indicate the use of the anisotropic metamaterial as a reflector for a certain polarized wave. Furthermore it is found that such a structure can realize the resonant gap with the increase of the thickness. Finally the effects of the absorption are considered and we find that the above properties do not change with the introduction of the absorption.
Keywords:  anisotropic metamaterials      magnetodielectric      quantization      electromagnetic field  
Received:  19 September 2014      Revised:  02 December 2014      Accepted manuscript online: 
PACS:  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104071).
Corresponding Authors:  Dong Yun-Xia     E-mail:
About author:  42.50.Nn; 42.25.Bs; 78.20.Bh

Cite this article: 

Dong Yun-Xia (董云霞), Liu Chun-Ying (刘春颖) Electromagnetic field quantization and input-output relation for anisotropic magnetodielectric metamaterial 2015 Chin. Phys. B 24 064206

[1] Huttner B and Barnett S M 1992 Phys. Rev. A 46 4306
[2] Suttorp L G and Wubs M 2004 Phys. Rev. A 70 013816
[3] Judge A C, Steel M J, Sipe J E and de Sterke C 2013 Phys. Rev. A 87 033824
[4] Amooshahi M 2009 J. Math. Phys. 50 062301
[5] Amooshahi M and Nasr Esfahani B 2010 Ann. Phys. 325 1913
[6] Gruner T and Welsch D G 1996 Phys. Rev. A 54 1661
[7] Dung H T, Buhmann S Y, Knöll L and Welsch D G 2003 Phys. Rev. A 68 043816
[8] Raabe C, Scheel S and Welsch D G 2007 Phys. Rev. A 75 053813
[9] Dong Y and Zhang X 2011 J. Opt. 13 035401
[10] Dong Y and Cui X 2012 Front. Phys. 7 509
[11] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[12] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[13] Shen L F, He S L and Xiao S S 2004 Phys. Rev. B 69 115111
[14] Li J, Zhou L, Chan C T and Sheng P 2003 Phys. Rev. Lett. 90 083901
[15] Smith D R and Schurig D 2003 Phys. Rev. Lett. 90 077405
[16] Zhou L, Chan C T and Sheng P 2003 Phys. Rev. B 68 115424
[17] Sun S, Huang X and Zhou L 2007 Phys. Rev. E 75 066602
[18] Hu L and Chui S T 2002 Phys. Rev. B 66 085108
[19] Hao J and Zhou L 2008 Phys. Rev. B 77 094201
[20] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[21] Sun Y, Ran L, Peng L, Wang W, Li T, Zhao X and Chen Q 2009 Chin. Phys. B 18 174
[1] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[2] Wire network behavior of superconducting films with lower symmetrical mesoscopic hole arrays
Wei-Gui Guo(郭伟贵), Zi-Xi Pei(裴子玺), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037405.
[3] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[4] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[5] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[6] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[7] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[8] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[9] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[10] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[11] ADC border effect and suppression of quantization error in the digital dynamic measurement
Li-Na Bai(白丽娜), Hai-Dong Liu(刘海东), Wei Zhou(周渭), Yong Zhang(张勇), Hong-Qi Zhai(翟鸿启), Zhen-Jian Cui(崔震健), Ming-Ying Zhao(赵明英), Xiao-Qian Gu(谷小倩), Bei-Ling Liu(刘蓓玲), Li-Bei Huang(黄李贝). Chin. Phys. B, 2017, 26(9): 090601.
[12] Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering
Feng Yang(杨丰), Yinglu Ji(纪英露), Xiao Zhang(张霄), Qingxia Fan(范庆霞), Nan Zhang(张楠), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Qiang Zhang(张强), Yanchun Wang(王艳春), Xiaochun Wu(吴晓春), Junjie Li(李俊杰), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(7): 078801.
[13] Spherical reconciliation for a continuous-variable quantum key distribution
Zhao Lu(卢钊), Jian-Hong Shi(史建红), Feng-Guang Li(李风光). Chin. Phys. B, 2017, 26(4): 040304.
[14] An acoustic bending waveguide designed by anisotropic density-near-zero metamaterial
Yang-Yang Wang(王洋洋), Er-Liang Ding(丁二亮), Xiao-Zhou Liu(刘晓宙), Xiu-Fen Gong(龚秀芬). Chin. Phys. B, 2016, 25(12): 124305.
[15] Inverse problem of pulsed eddy current field of ferromagnetic plates
Chen Xing-Le (陈兴乐), Lei Yin-Zhao (雷银照). Chin. Phys. B, 2015, 24(3): 030301.
No Suggested Reading articles found!