Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028701    DOI: 10.1088/1674-1056/abc0d2

An electromagnetic view of relay time in propagation of neural signals

Jing-Jing Xu(徐晶晶)1,2,†, San-Jin Xu(徐三津)1, Fan Wang(王帆)1, and Sheng-Yong Xu(许胜勇)2,
1 School of Microelectronics, Shandong University, Ji'nan 250100, China; 2 Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract  We review the experimental and computational data about the propagation of neural signals in myelinated axons in mice, cats, rabbits, and frogs published in the past five decades. In contrast to the natural assumption that neural signals occur one by one in time and in space, we figure out that neural signals are highly overlapped in time between neighboring nodes. This phenomenon was occasionally illustrated in some early reports, but seemed to have been overlooked for some time. The shift in time between two successive neural signals from neighboring nodes, defined as relay time τ , was calculated to be only 16.3 μ s-87.0 μ s, i.e., 0.8%-4.4% of the average duration of an action potential peak (roughly 2 ms). We present a clearer picture of the exact physical process about how the information transmits along a myelinated axon, rather than a whole action potential peak, what is transmitted is only a rising electric field caused by transmembrane ion flows. Here in the paper, τ represents the waiting time until the neighboring node senses an attenuated electric field reaching the threshold to trigger the open state. The mechanisms addressed in this work have the potential to be universal, and may hold clues to revealing the exact triggering processes of voltage-gated ion channels and various brain functions.
Keywords:  neural signal relay      propagation velocity      electromagnetic field model      ion channels  
Received:  03 July 2020      Revised:  09 September 2020      Accepted manuscript online:  14 October 2020
PACS: (Action potential propagation and axons)  
  87.19.lq (Neuronal wave propagation)  
  87.19.rp (Impulse propagation)  
  87.19.L- (Neuroscience)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0701302 and 2016YFA0200802) and the Fundamental Research Funds of Shandong University, China (Grant No. 2018GN030).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇) An electromagnetic view of relay time in propagation of neural signals 2021 Chin. Phys. B 30 028701

1 Hameroff S and Penrose R 2014 Phys. Life. Rev. 11 39
2 Georgiev D and Dimchev 2003 Social Science Electronic Publishing
3 Gonzalez-Perez A, Budvytyte R, Mosgaard L D, Nissen S R and Heimburg T 2014 Phys. Rev. X 4
4 Heimburg T and Jackson A D 2005 Proc. Natl. Acad. Sci. USA 102 9790
5 Xu J, Xu Y, Sun W, Li M and Xu S 2018 Sci. Rep. 8 13824
6 Xu S, Xu J and Yang F 2016 Neuroscience & Biomedical Engineering 4 230
7 Xue J and Xu S 2012 Quantitative Biology
8 Hartline D K and Colman D R 2007 Curr. Biol. 17 29
9 Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
10 Villapecellin-Cid M M, Rao L and Reina-Tosina J 2003 International Conference of the IEEE Engineering in Medicine & Biology Society 25 1950
11 Heimburg T and Jackson A D 2007 Biophys. Rev. Lett. 2 57
12 Lautrup B, Appali R, Jackson A D and Heimburg T 2011 Eur. Phys. J. 34
13 Bulai P M M, Pavel G, Denisov A A, Pitlik T N and Cherenkevich S N 2012 Eur. Biophys. J. 41 319
14 Quinn S J, Kifor O, Trivedi S, Diaz R, Vassilev P and Brown E 1998 J. Biol. Chem. 273 19579
15 Liu G, Chang C, Qiao Z, Wu K, Zhu Z, Cui G, Peng W, Tang Y, Li J and Fan C 2019 Adv. Funct. Mater. 29 1807862
16 Zangari A, Micheli D, Galeazzi R and Tozzi A 2018 Sci. Rep. 8 539
17 Sepehri R M, Cohen L B, Braubach O and Baker B J 2018 Sci. Rep. 8 6911
18 Volkov AG 2019 Bioelectrochemistry 125 25
19 Nguyen C T, Kurenda A, Stolz S, Cételat A and Farmer E E 2018 Proc. Natl. Acad. Sci. USA 115 10178
20 Eckert R 1972 Science 176 473
21 Sun W Q, Yang Y and Xu S Y. 2011 Key Engineering Materials 483 755
22 Paintal A S 1966 J. Physiol-London 184 791
23 Paintal A S 1967 J. Physiol. 193 523
24 Marks W B and Loeb G E 1976 Biophys. J. 16 655
25 Simpson A H, Gillingwater T H, Anderson, H, Cottrell D, Sherman D L, Ribchester R R and Brophy P J 2013 J. Neurosci. 33 4536
26 Etxeberria A, Hokanson K C, Dao D Q, Mayoral S R, Mei F, Redmond S A, Ullian E M and Chan J R 2016 J. Neurosci. 36 6937
27 Villalòn E, Barry D M, Byers N, Frizzi K and Garcia M L 2018 Exp. Neurol. 306 158
28 Frankenhaeuser B 1952 J. Physiol. 118 107
29 Rasminsky M and Sears T A 1972 J. Physiol-London 227 323
30 Koles Z J and Rasminsky M 1972 J. Physiol. 227 351
31 Akaishi T 2017 Front. Physiol. 8 798
32 Court F A, Sherman D L, Pratt T, Garry E M, Ribchester R R, Cottrell D F, Fleetwood-Walker S M and Brophy P J 2004 Nature 431 191
33 Bear M F, Connors B W and Paradiso M A2007 \em Neuroscience: Exploring the brain, 3rd edn. (Lippincott Williams & Wilkins)
34 Hua H and Jonas P 2014 Nat. Neurosci. 17 686
35 Friede R L 2017 J. Neuropath. Exp. Neur. 76 258
36 Rushton W A H 1951 J. Physiol. 115 101
37 Waxman S G and Ritchie J M 1993 Ann. Neurol. 33 121
38 Brill M H, Waxman S G, Moore J W and Joyner R W 1977 J. Neurol. Neurosur. Ps. 40 769
39 Arbuthnott E R, Boyd I A and Kalu K U 1980 J. Physiol. 308 125
40 Prister\'a A, Baker M D and Okuse K 2012 Plos One 7 673
41 Jahnsen H and Llinas R R 1984 J. Physiol. 349 205
42 Black J A, Foster R E and Waxman S G 1981 J. Neurocytol. 10 981
43 Prister\'a A and Okuse K 2012 Neuroscientist A Review Journal Bringing Neurobiology Neurology & Psychiatry 18 70
44 Neishabouri A and Faisal A A 2014 Front. Neuroanat. 8 109
45 Johnston W L, Dyer J R, Castellucci V F and Dunn R J 1996 J. Neurosci. 16 1730
46 Zeng S and Tang Y 2009 Phys. Rev. E 80 021917
47 Hess A and Young J Z 1952 P. Roy. Soc. B-Biol. Sci. 140 301
48 Matsumoto G and Tasaki I 1977 Biophys. J. 20 1
49 Rietz R 1996 Jama-J. Am. Med. Assoc. 275 157
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[3] Investigation on the shockwave induced by surface arc plasma in quiescent air
Jin Di (金迪), Li Ying-Hong (李应红), Jia Min (贾敏), Li Fan-Yu (李凡玉), Cui Wei (崔巍), Sun Quan (孙权), Zhang Bai-Ling (张百灵), Li Jun (李军). Chin. Phys. B, 2014, 23(3): 035201.
No Suggested Reading articles found!