|
|
Optimization of endcap trap for single-ion manipulation |
Yuan Qian(钱源)1,2,3, Chang-Da-Ren Fang(方长达人)1,2,3, Yao Huang(黄垚)1,2, Hua Guan(管桦)1,2, Ke-Lin Gao(高克林)1,2 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Potential distribution is an important characteristic for evaluating the performance of an ion trap. Here, we analyze and optimize the potential distribution of an endcap ion trap for single-ion trapping.We obtain an optimal endcap radius of 225 μm-250 μm, endcap-shield gap of~250 μm, and inter-endcap distance of 540 μm-590 μm. The simulation method for analysis can also be applied to other ion traps, which is useful for improving the design and assembly of ion traps.
|
Received: 27 December 2017
Revised: 28 March 2018
Accepted manuscript online:
|
PACS:
|
37.10.Ty
|
(Ion trapping)
|
|
41.20.-q
|
(Applied classical electromagnetism)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2017YFA0304401),the National Development Project for Major Scientific Research Facility,China (Grant No.ZDYZ2012-2),the National Natural Science Foundation of China (Grant Nos.91336211 11634013,11474318,and 11622434),the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB21030100),the Hubei Provincial Science Fund for Distinguished Young Scholars,China (Grant No.2017CFA040),and the Youth Innovation Promotion Association,Chinese Academy of Sciences (Grant No.2015274). |
Corresponding Authors:
Ke-Lin Gao
E-mail: klgao@wipm.ac.cn
|
Cite this article:
Yuan Qian(钱源), Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Ke-Lin Gao(高克林) Optimization of endcap trap for single-ion manipulation 2018 Chin. Phys. B 27 063701
|
[1] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[2] |
Dube P, Madej A A, Shiner A and Jian B 2015 Phys. Rev. A 92 042119
|
[3] |
Godun R M, Nisbet-Jones P B, Jones R J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801
|
[4] |
Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503
|
[5] |
Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
|
[6] |
Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
|
[7] |
Margolis H S 2009 Eur. Phys. J. Special Topics 172 97
|
[8] |
Michael Brownnutt 2007 "88Sr+ ion trapping techniques and technologies for quantum information processing", Ph. D dissertation (London:Imperial College London)
|
[9] |
Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
|
[10] |
Roos C, Zeiger T, Rohde H, Nägerl H C, Eschner J, Leibfried D, Schmidt-Kaler F and and Blatt R 1999 Phys. Rev. Lett. 83 4713
|
[11] |
Blatt R and Wineland D 2008 Nature 453 1008
|
[12] |
Monroe C and Lukin M 2008 Phys. World 21 8
|
[13] |
Häffner H, Roos C F and Blatt R 2008 Phys. Rep. 469 155
|
[14] |
March R E and Todd J F J 2005 Quadrupole Ion Trap Spectrometry, 2nd edn. (New Jersey:John Wiley & Sons, Inc.) pp. 93-94
|
[15] |
Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L 2014 Chin. Phys. B 23 123702
|
[16] |
Du L J, Chen T, Song H F, Chen S L, Li H X, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 083702
|
[17] |
Du L J, Song H F, Li H X, Chen S L, Chen T, Sun H Y, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 113703
|
[18] |
Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001
|
[19] |
Schrama C A, Peik E, Smith W W and Walther H 1993 Opt. Commun. 101 32
|
[20] |
Brkic B, Taylor S, Ralph J F and France N 2006 Phys. Rev. A 73 012326
|
[21] |
Brown L S and Gabrielse G 1986 Rev. Mod. Phys. 58 233
|
[22] |
Wolfgang Paul 1990 Rev. Mod. Phys. 62 531
|
[23] |
Earnshaw and Samuel 1842 Trans. Camb. Phil. Soc. 7 97
|
[24] |
Cao J, Tong X, Cui K F, Shang J J, Shu H L and Huang X R 2014 Chin. Phys. Lett. 31 043701
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|