|
|
Rydberg excitation of neutral nitric oxide molecules instrong UV and near-IR laser fields |
Lv Hang (吕航)a b, Zhang Jun-Feng (张军峰)a b, Zuo Wan-Long (左万龙)a b, Xu Hai-Feng (徐海峰)a b, Jin Ming-Xing (金明星)a b, Ding Da-Jun (丁大军)a b |
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; b Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun 130012, China |
|
|
Abstract Rydberg state excitations of neutral nitric oxide molecules are studied in strong ultraviolet (UV) and near-infra-red (IR) laser fields using a linear time-of-flight (TOF) mass spectrometer with the pulsed electronic field ionization method. The yield of Rydberg molecules is measured as a function of laser intensity and ellipticity, and the results in UV laser fields are compared with those in near-IR laser fields. The present study provides the first experimental evidence of neutral Rydberg molecules surviving in a strong laser field. The results indicate that a rescattering-after-tunneling process is the main contribution to the formation of Rydberg molecules in strong near-IR laser fields, while multi-photon excitation may play an important role in the strong UV laser fields.
|
Received: 24 December 2014
Revised: 09 January 2015
Accepted manuscript online:
|
PACS:
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11034003 and 11274140). |
Corresponding Authors:
Xu Hai-Feng
E-mail: xuhf@jlu.edu.cn
|
About author: 33.80.Rv |
Cite this article:
Lv Hang (吕航), Zhang Jun-Feng (张军峰), Zuo Wan-Long (左万龙), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军) Rydberg excitation of neutral nitric oxide molecules instrong UV and near-IR laser fields 2015 Chin. Phys. B 24 063303
|
[1] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[2] |
Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
|
[3] |
Vozzi C, Negro M and Stagira S 2012 J. Mod. Opt. 59 1283
|
[4] |
Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G and Yang Y J 2014 Chin. Phys. B 23 53202
|
[5] |
Luo L Y, Du H C and Hu B T 2012 Chin. Phys. B 21 033202
|
[6] |
Jia X Y, Fan D H, Li W D and Chen J 2013 Chin. Phys. B 22 013303
|
[7] |
Nubbemeyer T, Gorling K, Saenz A, Eichmann U and Sandner W 2008 Phys. Rev. Lett. 101 233001
|
[8] |
Eichmann U, Nubbemeyer T, Rottke H and Sandner W 2009 Nature 461 1261
|
[9] |
Xia Q Z, Fu L B and Liu J 2013 Phys. Rev. A 87 33404
|
[10] |
von Veltheim A, Manschwetus B, Quan W, Borchers B, Steinmeyer G, Rottke H and Sandner W 2013 Phys. Rev. Lett. 110 23001
|
[11] |
Emmanouilidou A, Lazarou C, Staudte A and Eichmann U 2009 Phys. Rev. Lett. 102 113002
|
[12] |
McKenna J, Zeng S, Hua J J, Sayler A M, Zohrabi M, Johnson Nora G, Gaire B, Carnes K D, Esry B D and Ben-Itzhak I 2011 Phys. Rev. A 84 43425
|
[13] |
Nubbemeyer T, Eichmann U and Wsandner 2009 J. Phys. B: At. Mol. Opt. Phys. 42 134010
|
[14] |
Wu J, Vredenborg A, Ulrich B, Schmidt L Ph H, Meckel M, Voss S, Sann H, Kim H, Jahnke T and Döner R 2011 Phys. Rev. Lett. 107 43003
|
[15] |
Volkova E A, Popov A M and Tikhonova O V 2011 JETP 113 394
|
[16] |
Popov A M, Tikhonova O V and Volkova E A 2009 Laser Phys. 19 1607
|
[17] |
Morales F, Richter M, Patchkovskii S and Smirnova O 2011 PNAS 108 16906
|
[18] |
Jones R R, Schumacher D W and Bucksbaum P H 1993 Phys. Rev. A 47 R49
|
[19] |
Talebpoury A, Liang Y and Chin S L 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3435
|
[20] |
Liu H, Liu Y, Fu L B, Xin G G, Ye D F, Liu J, He X T, Yang Y D, Liu X R, Deng Y K, Wu C Y and Gong Q H 2012 Phys. Rev. Lett. 109 93001
|
[21] |
Li Q G, Tong X M, Morishita T, Wei H and Lin C D 2014 Phys. Rev. A 89 23421
|
[22] |
Softley T P 2004 Int. Rev. Phys. Chem. 23 1
|
[23] |
Guo C L and Gibson G N 2001 Phys. Rev. A 63 40701
|
[24] |
Zhang X, Zhang D D, Liu H, Xu H F, Jin M X and Ding D J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 25102
|
[25] |
Zhang D D, Ni Q, Luo S Z, Zhang J, Liu H, Xu H F, Jin M X and Ding D J 2011 Chin. Phys. Lett. 28 33301
|
[26] |
Ammosov, Delone and Krainov 1986 Sov. Phys. JETP 64 1191
|
[27] |
Keldysh 1965 Sov. Phys. JETP 5 1307
|
[28] |
Landsman A S, Pfeiffer A N, Hofmann C, Smolarski M, Cirelli C and Keller U 2013 New J. Phys. 15 13001
|
[29] |
Khan S D, Cheng Y, Möler M, Zhao K, Zhao B Z, Chini M, Paulus G G and Chang Z H 2011 Appl. Phys. Lett. 99 161106
|
[30] |
Henrichs K, Waitz M, Trinter F, Kim H, Menssen A, Gassert H, Sann H, Jahnke T, Wu J, Pitzer M, Richter M, Schöfler M S, Kunitski M and Döner R 2013 Phys. Rev. Lett. 111 113003
|
[31] |
Huang K Y, Xia Q Z and Fu L B 2013 Phys. Rev. A 87 33415
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|