Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060507    DOI: 10.1088/1674-1056/24/6/060507
GENERAL Prev   Next  

A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors

Marius-F. Dancaa b, M. A. Aziz-Alaouic, Michael Smalld
a Department of Mathematics and Computer Science, Emanuel University of Oradea, 410597 Oradea, Romania;
b Romanian Institute of Science and Technology, 400487 Cluj-Napoca, Romania;
c Normandie University, France; ULH, LMAH, F-76600 Le Havre; FR CNRS 3335, ISCN, 25 rue Philippe Lebon 76600 Le Havre, France;
d School of Mathematics and Statistics, University of Western Australia, Crawley, WA 6009, Australia
Abstract  In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chen system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations, we reveal chaotic behaviors and also multistability, i.e., the existence of small parameter windows where, for some fixed bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible. Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically approximated.
Keywords:  PWL Chen attractor of fractional-order      parameter switching      Cellina's Theorem      Filippov regularization      Sigmoid function      bifurcation diagram  
Received:  07 November 2014      Revised:  30 December 2014      Accepted manuscript online: 
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Dedicated to Professor Chen Guan-Rong on the occasion of his 65th birthday.
Corresponding Authors:  Marius-F. Danca, M. A. Aziz-Alaoui, Michael Small     E-mail:  danca@rist.ro;aziz.alaoui@univ-lehavre.fr;michael.small@uwa.edu.au
About author:  05.45.Ac; 05.45.Gg; 05.45.Pq

Cite this article: 

Marius-F. Danca, M. A. Aziz-Alaoui, Michael Small A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors 2015 Chin. Phys. B 24 060507

[1] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[2] Aziz-Alaoui M A and Chen G 2002 Int. J. Bifur. Chaos 12 147
[3] Hu J B, Zhao L D and Xie Z G 2013 Chin. Phys. B 22 080506
[4] Liu J G 2013 Chin. Phys. B 22 060510
[5] Mainardi F 1996 Appl. Math. Lett. 9 23
[6] Li R H and Chen W S 2013 Chin. Phys. B 22 040503
[7] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications Fractional Differential Equations (Amsterdam: North-Holland Mathematics Studies, Vol. 204, North-Holland)
[8] Zhang R X, Yang Y, Yang S P and Wang X B 2009 Acta Phys. Sin. 58 6039 (in Chinese)
[9] Samko G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Yverdon: Gordon and Breach)
[10] Ma T, Jiang W, Fu J, Chai Y, Chen L and Xue F 2012 Acta Phys. Sin. 61 160506 (in Chinese)
[11] Wang S P, Lao S K, Chen H K, Chen J H and Chen S Y 2013 Int. J. Bifurc. Chaos 23 1350030
[12] Petras I 2011 Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Hidelberg: Springer-Verlag)
[13] Arena P, Caponetto R, Fortuna L and Porto D 2000 Nonlinear Noninteger Order Circuits and Systems: An Introduction (Singapore: World Scientific)
[14] Wen S, Zeng Z, Huang T and Zhang Y 2014 IEEE Trans. Fuzzy Sys. 22 1704
[15] Wen S, Huang T, Zeng Z, Chen Y and Lie P 2014 Neural Networks 63 48
[16] Wen S P, Zeng Z G, Huang T W and Li C J 2013 International Journal of Robust and Nonlinear Control DOI: 10.1002/rnc.3112
[17] Li C and Chen G 2004 Chaos, Solitons & Fractals 22 549
[18] Caputo M 1967 Geophys. J. R. Astron. Soc. 13 529; reprinted in Fract. Calc. Appl. Anal. 2007 10 309
[19] Oldham K B and Spanier J 1974 The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order (New York: Academic Press)
[20] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[21] Heymans N and Podlubny I 2006 Rheol. Acta 45 765
[22] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[23] Danca M F and Diethlem K 2011 Commun. Nonlinear Sci. Numer. Simul. 15 3745
[24] Danca M F 2013 Commun. Nonlinear Sci. Numer. Simul. 18 500
[25] Feckan M and Danca M F 2014 Mathematica Slovaca accepted
[26] Diethlem K 2010 The Analysis of Fractional Differential Equations (Berlin/Heidelberg: Springerr-Verlag)
[27] Odibat Z, Bertelle C, Aziz-Alaoui M A and Duchamp G 2010 Comput. Math. Appl. 59 1462
[28] Danca M F 2014 Int. J. Bifur. Chaos accepted
[29] Kaslik E and Sivasundaram S 2012 Nonlinear Anal-Real 13 1489
[30] Falconer K 1990 Fractal Geometry, Mathematical Foundations and Applications (Chichester: John Wiley and Sons)
[1] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[2] Bifurcation behavior and coexisting motions in a time-delayed power system
Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红). Chin. Phys. B, 2015, 24(3): 030501.
[3] Symmetrical dynamical characteristic of peak and valley current-mode controlled single-phase H-bridge inverter
Liu Hong-Chen (刘洪臣), Li Fei (李飞), Su Zhen-Xia (苏振霞), Sun Li-Shan (孙立山). Chin. Phys. B, 2013, 22(11): 110501.
[4] Controlling and synchronization of a hyperchaotic system based on passive control
Zhu Da-Rui (朱大锐), Liu Chong-Xin (刘崇新), Yan Bing-Nan (燕并男). Chin. Phys. B, 2012, 21(9): 090509.
[5] Novel four-dimensional autonomous chaotic system generating one-, two-, three- and four-wing attractors
Yu Fei(余飞), Wang Chun-Hua(王春华), Yin Jin-Wen(尹晋文), and Xu Hao(徐浩) . Chin. Phys. B, 2011, 20(11): 110505.
[6] Phase synchronization and its transition in two coupled bursting neurons: theoretical and numerical analysis
Wang Hai-Xia(王海侠), Lu Qi-Shao(陆启韶), and Shi Xia(石霞). Chin. Phys. B, 2010, 19(6): 060509.
[7] Hopf bifurcation analysis of Chen circuit with direct time delay feedback
Ren Hai-Peng(任海鹏), Li Wen-Chao(李文超), and Liu Ding(刘丁). Chin. Phys. B, 2010, 19(3): 030511.
[8] Analysis of transition between chaos and hyper-chaos of an improved hyper-chaotic system
Gu Qiao-Lun(顾巧论) and Gao Tie-Gang(高铁杠). Chin. Phys. B, 2009, 18(1): 84-90.
[9] A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system
Wang Fan-Zhen(王繁珍), Chen Zeng-Qiang(陈增强), Wu Wen-Juan(吴文娟), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2007, 16(11): 3238-3243.
[10] Bifurcation behaviours of peak current controlled PFC boost converter
Ren Hai-Peng (任海鹏), Liu Ding (刘丁). Chin. Phys. B, 2005, 14(7): 1352-1358.
No Suggested Reading articles found!