Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 056802    DOI: 10.1088/1674-1056/24/5/056802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamic simulations of surface morphology and pulsedlaser deposition growth of lithium niobate thin filmson silicon substrate

Liu Yue (刘悦)a, Zhu Hao-Nan (朱浩楠)b, Pei Zi-Dong (裴子栋)a, Kong Yong-Fa (孔勇发)a c, Xu Jing-Jun (许京军)a
a The MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457, China;
b School of Mathematical Science, Peking University, Beijing 100871, China;
c R & D Center, Taishan Sports Industry Group, Leling 253600, China
Abstract  The molecular dynamic simulation of lithium niobate thin films deposited on silicon substrate is carried out by using the dissipative particle dynamics method. The simulation results show that the Si (111) surface is more suitable for the growth of smooth LiNbO3 thin films compared to the Si(100) surface, and the optimal deposition temperature is around 873 K, which is consistent with the atomic force microscope results. In addition, the calculation molecular number is increased to take the electron spins and other molecular details into account.
Keywords:  lithium niobate      silicon      dissipative particle dynamics  
Received:  09 July 2014      Revised:  25 November 2014      Accepted manuscript online: 
PACS:  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  61.72.uf (Ge and Si)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project Special Fund, China, and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 65030091 and 65010961).
Corresponding Authors:  Kong Yong-Fa, Xu Jing-Jun     E-mail:  kongyf@nankai.edu.cn;jjxu@nankai.edu.cn
About author:  68.35.-p; 61.72.uf; 31.15.xv

Cite this article: 

Liu Yue (刘悦), Zhu Hao-Nan (朱浩楠), Pei Zi-Dong (裴子栋), Kong Yong-Fa (孔勇发), Xu Jing-Jun (许京军) Molecular dynamic simulations of surface morphology and pulsedlaser deposition growth of lithium niobate thin filmson silicon substrate 2015 Chin. Phys. B 24 056802

[1] Kösters M, Sturman B, Werheit P, Haertle D and Buse K 2009 Nat. Photon. 3 510
[2] Morales A M and Lieber C M 1998 Science 279 208
[3] Park Y B, Min B, Vahala K J and Atwater H A 2006 Adv. Mater. 18 12
[4] Baumann R C, Rost T A and Rabson T A 1990 J. Appl. Phys. 68 2989
[5] Lee S H, Song T K, Noh T W and Lee J H 1995 Appl. Phys. Lett. 67 43
[6] Chaos J A, Gonzalo J, Afonso C N, Perričre J and Garćia-Gonźalez M T 2001 Appl. Phys. A 72 6
[7] Wang X C, Ye Z Z and Zhao B H 2007 Solid State Commun. 142 694
[8] Rode S, Holscher R, Sanna S, Klassen S, Kobayashi K, Yamada H, Schmidt W G and Kuhnle A 2012 Phys. Rev. B 86 075468
[9] Yamamoto R and Onuki A 1998 Phys. Rev. Lett. 81 4915
[10] Zheng S, Zhu W, Gao Y F, Stocks G M and Zhang Z 2010 Appl. Phys. Lett. 96 071913
[11] Haberland H, Insepov Z and Moseler M 1995 Phys. Rev. B 51 11061
[12] Zhang C and Li M 2010 Appl. Phys. Lett. 96 073112
[13] Warrender J M and Aziz M J 2003 Mat. Res. Soc. Symp. Proc. 749 w311
[14] Hoogerbrugge P J and Koelman J M 1992 Europhys. Lett. 19 155
[15] Koelman J M and Hoogerbrugge P J 1993 Europhys. Lett. 21 363
[16] Ryjkina E, Kuhn H, Rehage H, Felix M and Peggau J 2002 Angew. Chem. Int. Ed. 41 6
[17] Kuo M Y, Yang H C, Hua C Y, Chen C L, Mao S Z, Deng F, Wang H H and Du Y R 2004 ChemPhysChem 5 4
[18] Espanol R and Warren P 1995 Europhys. Lett. 30 191
[19] Groot R and Warren P 1997 J. Chem. Phys. 107 4423
[1] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[7] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[8] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[9] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[10] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[11] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[12] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
No Suggested Reading articles found!