Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050308    DOI: 10.1088/1674-1056/24/5/050308
GENERAL Prev   Next  

Quantum information transmission in the quantum wireless multihop network based on Werner state

Shi Li-Hui (施丽慧)a, Yu Xu-Tao (余旭涛)a, Cai Xiao-Fei (蔡晓菲)a, Gong Yan-Xiao (龚彦晓)b, Zhang Zai-Chen (张在琛)c
a State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China;
b Department of Physics, Southeast University, Nanjing 211189, China;
c State Key Laboratory of Mobile Communications, Southeast University, Nanjing 210096, China
Abstract  Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation.
Keywords:  multihop network      Werner state      teleportation  
Received:  07 September 2014      Revised:  21 November 2014      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project Project Project of State Key Laboratory of Millimeter Waves (Grant No. Z201504).
Corresponding Authors:  Yu Xu-Tao     E-mail:  yuxutao@seu.edu.cn
About author:  03.67.Hk; 03.65.Ud

Cite this article: 

Shi Li-Hui (施丽慧), Yu Xu-Tao (余旭涛), Cai Xiao-Fei (蔡晓菲), Gong Yan-Xiao (龚彦晓), Zhang Zai-Chen (张在琛) Quantum information transmission in the quantum wireless multihop network based on Werner state 2015 Chin. Phys. B 24 050308

[1] Gisin N and Thew R 2007 Nat. Photon. 1 165
[2] Imre S and Gyongyosi L 2012 Advanced Quantum Computing and Communications-An Engineering Approach (Wiley: IEEE Press) p. 488
[3] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Facchi P, Florio G, Parisi G and Pascazio S 2008 Phys. Rev. A 77 060304
[5] Vicente J I, Spee C and Kraus B 2013 Phys. Rev. Lett. 111 110502
[6] Gour G 2004 Phys. Rev. A 70 042301
[7] Kumar A, Adhikari S, Banerjee S and Roy S 2013 Phys. Rev. A 87 022307
[8] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60 1888
[9] Jung E, Hwang M R, Ju Y H, Kim M S, Yoo S K, Kim H, Park D, Son J W, Tamaryan S and Cha S K 2008 Phys. Rev. A 78 012312
[10] Popescu S 1994 Phys. Rev. Lett. 72 797
[11] Oh S, Lee S and Lee H 2002 Phys. Rev. A 66 022316
[12] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W 1997 Phys. Rev. Lett. 78 2031
[13] Peters N A, Altepeter J B, Branning D, Jeffrey E R, Wei T and Kwiat P G 2004 Phys. Rev. Lett. 92 133601
[14] Werner R F 1989 Phys. Rev. A 40 4277
[15] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[16] Ma X S, Herbst T, Scheidl T, Wang D, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimova E, Makarov V, Jennewein T, Ursin R and Zeilinger A 2012 Nature 489 269
[18] Briegel H J, Dur W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[19] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[17] Dur W, Briegel H J, Cirac J and Zoller P 1999 Phys. Rev. A 59 169
[20] Schmid C, Kiesel N, Weber U K, Ursin R, Zeilinger A and Weinfurter H 2009 New J. Phys. 11 033008
[21] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[22] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[23] Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236
[24] Prakash H and Verma V 2013 arXiv:1305.4259[quant-ph]
[25] Rodney V M 2014 Quantum Networking (Wiley-ISTE) p. 368
[26] Yu X T, Xu J and Zhang Z C 2013 Chin. Phys. B 22 090311
[27] Yu X T, Xu J and Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese)
[28] Pei C X, Liu X H and Nie M 2013 Acta Phys. Sin. 62 200304 (in Chinese)
[29] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (United Kingdoms: Cambridge University Press) p. 186
[30] Yan L L, Chang Y and Zhang S B 2013 Chin. Phys. Lett. 30 090301
[31] Peng J Y, Bai M Q and Mo Z W 2014 Chin. Phys. Lett. 31 010301
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[5] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[10] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[11] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[12] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[13] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[14] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[15] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing (赵明镜), Chen Bin (陈斌), Fei Shao-Ming (费少明). Chin. Phys. B, 2015, 24(7): 070302.
No Suggested Reading articles found!