|
|
Faithful quantum secure direct communication protocol against collective noise |
Yang Jing(杨静)a), Wang Chuan(王川)a)b)†ger, and Zhang Ru(张茹)a) |
a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Key Laboratory for Atomic and Molecular Nanosciences and Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract An improved quantum secure direct communication (QSDC) protocol is proposed in this paper. Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly. The single logical qubits and unitary operations under decoherence free subspaces are presented and the generalized Bell states are constructed which are immune to the collective noise. Two steps of qubit transmission are used in this protocol to guarantee the security of communication. The security of the protocol against various attacks are discussed.
|
Received: 13 April 2010
Revised: 11 May 2010
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Fundamental Research Program (Grant No. 2010CB923202), the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0710), the National Natural Science Foundation of China (Grant Nos. 60937003 and 10947151). |
Cite this article:
Yang Jing(杨静), Wang Chuan(王川), and Zhang Ru(张茹) Faithful quantum secure direct communication protocol against collective noise 2010 Chin. Phys. B 19 110306
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India (IEEE, New York), pp.175--179
|
[2] |
Bennett C H 1992 Phys. Rev. Lett. 68 3121
|
[3] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
[4] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[5] |
Chen W, Han Z F, Mo X F, Xu F Z, Wei G and Guo G C 2008 Chinese Sicence Bulletin 53 1310
|
[6] |
Li X H, Zhao B K, Sheng Y B, Deng F G and Zhou H Y 2009 Int. J. Quant. Info. 7 1479
|
[7] |
Bostr"om K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
|
[8] |
Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
|
[9] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[10] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[11] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[12] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[13] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2007 Chin. Phys. 16 3553
|
[14] |
Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
|
[15] |
Gao F, Guo F Z, Wen Q Y and Zhu F C 2008 Science in China Series G-Physics Mechanics Astron, 51 1853
|
[16] |
Yang Y G and Wen Q Y 2008 Science in China Series G-Physics Mechanics Astron 51 176
|
[17] |
Gao T Z 2004 Naturforsch A 59 597
|
[18] |
Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
|
[19] |
Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
|
[20] |
Song J, Zhu A D and Zhang S 2007 Chin. Phys. 16 621
|
[21] |
Xia Y, Song J and Song H S 2007 Opt. Comm. 279 395
|
[22] |
Xia Y and Song H S 2007 Phys. Lett. A 364 117
|
[23] |
Song J, Xia Y and Song H S 2008 Comm. Theor. Phys. 49 635
|
[24] |
Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Frontiers of Physics in China 2 251
|
[25] |
Bacon D, Kempe J, Lidar D A and Whaley K B 2000 Phys. Rev. Lett. 85 1758
|
[26] |
Kempe J, Bacon D, Lidar D A and Whaley K B 2001 Phys. Rev. A 63 042307
|
[27] |
Zou X B, Shu J and Guo G C 2006 Phys. Rev. A 73 054301
|
[28] |
Xia Y, Song J, Song H S and Zhang S 2009 J. Opt. Soc. American B 26 129
|
[29] |
Zukowski M, Zeilinger A, Horne A and Ekert A K 1999 Phys. Rev. Lett. 71 4287
|
[30] |
Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wcotters W 1996 Phys. Rev. Lett. 76 722
|
[31] |
Deutsch D, Ekert A, Jozsa R, Macckiavello C, Popcscu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
|
[32] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
|
[33] |
Zhao Z, Yang T, Chen Y A, Zhang A N and Pan J W 2003 Phys. Rev. Lett. 90 207901
|
[34] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[35] |
Inamori H, Rallan L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6913
|
[36] |
Waks E, Zeevi A and Yamamoto Y 2001 Phys. Rev. A 65 052310 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|