|
|
High-dimensional quantum state transfer in a noisy network environment |
Qin Wei (秦伟)a b c d, Li Jun-Lin (李俊林)b c d, Long Gui-Lu (龙桂鲁)b c d |
a School of Physics, Beijing Institute of Technology, Beijing 100081, China;
b State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
c Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
d Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China |
|
|
Abstract We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.
|
Received: 12 January 2015
Revised: 19 January 2015
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
75.10.Pq
|
(Spin chain models)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175094 and 91221205) and the National Basic Research Program of China (Grant No. 2011CB9216002). Long Gui-Lu also thanks the support of Center of Atomic and Molecular Nanoscience of Tsinghua University, China. |
Corresponding Authors:
Long Gui-Lu
E-mail: gllong@mail.tsinghua.edu.cn
|
Cite this article:
Qin Wei (秦伟), Li Jun-Lin (李俊林), Long Gui-Lu (龙桂鲁) High-dimensional quantum state transfer in a noisy network environment 2015 Chin. Phys. B 24 040305
|
[1] |
Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438
|
[2] |
Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Nature 422 408
|
[3] |
Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
|
[4] |
Dong H, Xu D Z, Huang J F and Sun C P 2012 Light Sci. Appl. 1 e2
|
[5] |
Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
|
[6] |
Bose S 2003 Phys. Rev. Lett. 91 207901
|
[7] |
Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 100 180406
|
[8] |
Godsil C, Kirkland S, Severini S and Smith J 2012 Phys. Rev. Lett. 109 050502
|
[9] |
Yao N Y, Laumann C R, Gorshkov A V, Weimer H, Jiang L, Cirac J I, Zoller P and Lukin M D 2013 Nat. Commun. 4 1585
|
[10] |
Ping Y, Lovett B W, Benjamin S C and Gauger E M 2013 Phys. Rev. Lett. 110 100503
|
[11] |
Wu N, Nanduri A and Rabitz H 2014 Phys. Rev. A 89 062105
|
[12] |
Korzekwa K, Machnikowski P and Horodecki P 2014 Phys. Rev. A 89 062301
|
[13] |
Xiang J D, Qin L G and Tian L J 2014 Chin. Phys. B 23 110305
|
[14] |
Zhang A P and Li F L 2013 Chin. Phys. B 22 030308
|
[15] |
Wang T J, Lu Y and Long G L 2012 Phys Rev A 86 042337
|
[16] |
Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
|
[17] |
Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
|
[18] |
Zhang J, Long G L, Zhang W, Deng Z, Liu W and Lu Z 2005 Phys. Rev. A 72 012331
|
[19] |
Vinet L and Zhedanov A 2012 Phys. Rev. A 85 012323
|
[20] |
Ajoy A and Cappellaro P 2013 Phys. Rev. Lett. 110 220503
|
[21] |
Wójcik A, Łuczak T, Kurzyński P, Grudka A, Gdala T and Bednarska M 2005 Phys. Rev. A 72 034303
|
[22] |
Banchi L, Apollparo T J G, Cuccoli A, Vaia R and Verrucchi P 2010 Phys. Rev. A 82 052321
|
[23] |
Apollparo T J G, Banchi L, Cuccoli A, Vaia R and Verrucchi P 2012 Phys. Rev. A 85 052319
|
[24] |
Yao N Y, Jiang L, Gorshkov A V, Gong Z X, Zhai A, Duan L M and Lukin M D 2011 Phys. Rev. Lett. 106 040505
|
[25] |
Shi T, Li Y, Song Z and Sun C P 2005 Phys. Rev. A 71 032309
|
[26] |
Fitzsimons J and Twamley J 2006 Phys. Rev. Lett. 97 090502
|
[27] |
Cappellaro P, Ramanathan C and Cory D G 2007 Phys. Rev. Lett. 99 250506
|
[28] |
Giorgi G L and Busch T 2013 Phys. Rev. A 88 062309
|
[29] |
Bechmann-Pasquinucci H and Tittel W 2000 Phys. Rev. A 61 062308
|
[30] |
Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 052331
|
[31] |
Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A. 88 032305
|
[32] |
Molina-Terriza G, Vaziri A, Ursin R and Zeilinger A 2005 Phys. Rev. Lett. 94 040501
|
[33] |
Goyal S K, Boukama-Dzoussi P E, Ghosh S, Roux F S and Konrad T 2014 Sci. Rep. 4 4543
|
[34] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[35] |
Jiang M, Huang X, Zhou L L, Zhou Y M and Zeng J 2012 Chin. Sci. Bull. 57 2247
|
[36] |
Zou X F and Qiu D W 2014 Sci. China-Phys. Mech. Astron. 57 1696
|
[37] |
Zheng C and Long G F 2014 Sci. China-Phys. Mech. Astron. 57 1238
|
[38] |
Wang W Y, Wang C, Zhang G Y and Long G L 2009 Chin. Sci. Bull. 54 158
|
[39] |
Deng F G, Zhou H Y and Long G L 2006 J. Phys. A: Math Gen. 39 14089
|
[40] |
Lu Y, Feng G R, Li Y S and Long G L 2015 Sci. Bull. 60 241
|
[41] |
Zhang C, Li C F and Guo G C 2015 Sci. Bull. 60 249
|
[42] |
Gottesman D 1999 Chaos, Solitons and Fractals 10 1749
|
[43] |
Cafaro C, Maiolini F and Mancini S 2012 Phys. Rev. A 86 022308
|
[44] |
Nielsen M A, Bremner M J, Dodd J L, Childs A M and Dawson C M 2002 Phys. Rev. A 66 022317
|
[45] |
Klimov A B, Guzmán R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313
|
[46] |
Hugh D M and Twamley J 2005 New J. Phys. 7 174
|
[47] |
Bullock S S, O, Leary D P and Brennen G K 2005 Phys. Rev. Lett. 94 230502
|
[48] |
Bishop C A and Byrd M S 2008 Phys. Rev. A 77 012314
|
[49] |
Paz-Silva G A, Rebić S, Twamley J and Duty T 2009 Phys. Rev. Lett. 102 020503
|
[50] |
Strauch F W 2011 Phys. Rev. A 84 052313
|
[51] |
Rousseaux B, Guérin S and Vitanov N V 2013 Phys. Rev. A 87 032328
|
[52] |
Cao Y, Peng S G, Zheng C and Long G L 2011 Commun. Theor. Phys. 55 790
|
[53] |
Luo M X and Wang X J 2014 Sci. China-Phys. Mech. Astron. 57 1712
|
[54] |
Bayat A and Karimipour V 2007 Phys. Rev. A 75 022321
|
[55] |
Bayat A 2014 Phys. Rev. A 89 062302
|
[56] |
Romero-Isart O, Eckert K and Sanpera A 2007 Phys. Rev. A 75 050303
|
[57] |
Qin W, Wang C and Long G L 2013 Phys. Rev. A 87 012339
|
[58] |
Hayes J P and Mudge T 1989 Proc. IEEE 77 1829
|
[59] |
Feder D L 2006 Phys. Rev. Lett. 97 180502
|
[60] |
Chudzicki C and Strauch F W 2010 Phys. Rev. Lett. 105 260501
|
[61] |
Qin W, Wang C, Cao Y and Long G L 2014 Phys. Rev. A 89 062314
|
[62] |
Moore C and Russell A 2002 Lecture Notes in Computer Science (Berlin: Springer-Verlag)
|
[63] |
Košík J and Bužek V 2005 Phys. Rev. A 71 012306
|
[64] |
Krovi H and Brun T A 2006 Phys. Rev. A 73 032341
|
[65] |
Marquezino F L, Portugal R, Abal G and Donangelo R 2008 Phys. Rev. A 77 042312
|
[66] |
Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
|
[67] |
Hein B and Tanner G 2009 J. Phys. A: Math. Theor. 42 085303
|
[68] |
Patel A and Rahaman Md A 2010 Phys. Rev. A 82 032330
|
[69] |
Patel A, Raghunathan K S and Rahaman Md A 2010 Phys. Rev. A 82 032331
|
[70] |
Beineke L W and Wilson R J (eds.) 1978 Selected Topics in Graph Theory (London: Academic)
|
[71] |
Cucchietti F M, Paz J P and Zurek W H 2005 Phys. Rev. A 72 052113
|
[72] |
Cai J M, Zhou Z W and Guo G C 2006 Phys. Rev. A 74 022328
|
[73] |
Paganelli S, de Pasquale F and Giampaolo S M 2002 Phys. Rev. A 66 052317
|
[74] |
Lucamarini M, Paganelli S and Mancini S 2004 Phys. Rev. A 69 062308
|
[75] |
Yuan X Z, Goan H S and Zhu K D 2007 New J. Phys. 9 219
|
[76] |
Yuan X Z, Goan H S and Zhu K D 2011 New J. Phys. 13 023018
|
[77] |
Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
|
[78] |
Majlis N 2000 The Quantum Theory of Magnetism (Singapore: World Scientific)
|
[79] |
Schwinger J 1965 Quantum Theory of Angular Momentum (New York: Academic)
|
[80] |
Życzkowski K and Sommers H 2001 J. Phys. A: Math. Gen. 34 7111
|
[81] |
Li H, Li Y S, Wang S H and Long G L 2014 Commun. Theor. Phys. 61 273
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|