Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040305    DOI: 10.1088/1674-1056/24/4/040305
GENERAL Prev   Next  

High-dimensional quantum state transfer in a noisy network environment

Qin Wei (秦伟)a b c d, Li Jun-Lin (李俊林)b c d, Long Gui-Lu (龙桂鲁)b c d
a School of Physics, Beijing Institute of Technology, Beijing 100081, China;
b State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
c Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
d Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
Abstract  

We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.

Keywords:  quantum state transfer      quantum spin      hypercubes      spin wave  
Received:  12 January 2015      Revised:  19 January 2015      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  75.10.Pq (Spin chain models)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11175094 and 91221205) and the National Basic Research Program of China (Grant No. 2011CB9216002). Long Gui-Lu also thanks the support of Center of Atomic and Molecular Nanoscience of Tsinghua University, China.

Corresponding Authors:  Long Gui-Lu     E-mail:  gllong@mail.tsinghua.edu.cn

Cite this article: 

Qin Wei (秦伟), Li Jun-Lin (李俊林), Long Gui-Lu (龙桂鲁) High-dimensional quantum state transfer in a noisy network environment 2015 Chin. Phys. B 24 040305

[1] Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438
[2] Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Nature 422 408
[3] Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
[4] Dong H, Xu D Z, Huang J F and Sun C P 2012 Light Sci. Appl. 1 e2
[5] Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
[6] Bose S 2003 Phys. Rev. Lett. 91 207901
[7] Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 100 180406
[8] Godsil C, Kirkland S, Severini S and Smith J 2012 Phys. Rev. Lett. 109 050502
[9] Yao N Y, Laumann C R, Gorshkov A V, Weimer H, Jiang L, Cirac J I, Zoller P and Lukin M D 2013 Nat. Commun. 4 1585
[10] Ping Y, Lovett B W, Benjamin S C and Gauger E M 2013 Phys. Rev. Lett. 110 100503
[11] Wu N, Nanduri A and Rabitz H 2014 Phys. Rev. A 89 062105
[12] Korzekwa K, Machnikowski P and Horodecki P 2014 Phys. Rev. A 89 062301
[13] Xiang J D, Qin L G and Tian L J 2014 Chin. Phys. B 23 110305
[14] Zhang A P and Li F L 2013 Chin. Phys. B 22 030308
[15] Wang T J, Lu Y and Long G L 2012 Phys Rev A 86 042337
[16] Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
[17] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[18] Zhang J, Long G L, Zhang W, Deng Z, Liu W and Lu Z 2005 Phys. Rev. A 72 012331
[19] Vinet L and Zhedanov A 2012 Phys. Rev. A 85 012323
[20] Ajoy A and Cappellaro P 2013 Phys. Rev. Lett. 110 220503
[21] Wójcik A, Łuczak T, Kurzyński P, Grudka A, Gdala T and Bednarska M 2005 Phys. Rev. A 72 034303
[22] Banchi L, Apollparo T J G, Cuccoli A, Vaia R and Verrucchi P 2010 Phys. Rev. A 82 052321
[23] Apollparo T J G, Banchi L, Cuccoli A, Vaia R and Verrucchi P 2012 Phys. Rev. A 85 052319
[24] Yao N Y, Jiang L, Gorshkov A V, Gong Z X, Zhai A, Duan L M and Lukin M D 2011 Phys. Rev. Lett. 106 040505
[25] Shi T, Li Y, Song Z and Sun C P 2005 Phys. Rev. A 71 032309
[26] Fitzsimons J and Twamley J 2006 Phys. Rev. Lett. 97 090502
[27] Cappellaro P, Ramanathan C and Cory D G 2007 Phys. Rev. Lett. 99 250506
[28] Giorgi G L and Busch T 2013 Phys. Rev. A 88 062309
[29] Bechmann-Pasquinucci H and Tittel W 2000 Phys. Rev. A 61 062308
[30] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 052331
[31] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A. 88 032305
[32] Molina-Terriza G, Vaziri A, Ursin R and Zeilinger A 2005 Phys. Rev. Lett. 94 040501
[33] Goyal S K, Boukama-Dzoussi P E, Ghosh S, Roux F S and Konrad T 2014 Sci. Rep. 4 4543
[34] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[35] Jiang M, Huang X, Zhou L L, Zhou Y M and Zeng J 2012 Chin. Sci. Bull. 57 2247
[36] Zou X F and Qiu D W 2014 Sci. China-Phys. Mech. Astron. 57 1696
[37] Zheng C and Long G F 2014 Sci. China-Phys. Mech. Astron. 57 1238
[38] Wang W Y, Wang C, Zhang G Y and Long G L 2009 Chin. Sci. Bull. 54 158
[39] Deng F G, Zhou H Y and Long G L 2006 J. Phys. A: Math Gen. 39 14089
[40] Lu Y, Feng G R, Li Y S and Long G L 2015 Sci. Bull. 60 241
[41] Zhang C, Li C F and Guo G C 2015 Sci. Bull. 60 249
[42] Gottesman D 1999 Chaos, Solitons and Fractals 10 1749
[43] Cafaro C, Maiolini F and Mancini S 2012 Phys. Rev. A 86 022308
[44] Nielsen M A, Bremner M J, Dodd J L, Childs A M and Dawson C M 2002 Phys. Rev. A 66 022317
[45] Klimov A B, Guzmán R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313
[46] Hugh D M and Twamley J 2005 New J. Phys. 7 174
[47] Bullock S S, O, Leary D P and Brennen G K 2005 Phys. Rev. Lett. 94 230502
[48] Bishop C A and Byrd M S 2008 Phys. Rev. A 77 012314
[49] Paz-Silva G A, Rebić S, Twamley J and Duty T 2009 Phys. Rev. Lett. 102 020503
[50] Strauch F W 2011 Phys. Rev. A 84 052313
[51] Rousseaux B, Guérin S and Vitanov N V 2013 Phys. Rev. A 87 032328
[52] Cao Y, Peng S G, Zheng C and Long G L 2011 Commun. Theor. Phys. 55 790
[53] Luo M X and Wang X J 2014 Sci. China-Phys. Mech. Astron. 57 1712
[54] Bayat A and Karimipour V 2007 Phys. Rev. A 75 022321
[55] Bayat A 2014 Phys. Rev. A 89 062302
[56] Romero-Isart O, Eckert K and Sanpera A 2007 Phys. Rev. A 75 050303
[57] Qin W, Wang C and Long G L 2013 Phys. Rev. A 87 012339
[58] Hayes J P and Mudge T 1989 Proc. IEEE 77 1829
[59] Feder D L 2006 Phys. Rev. Lett. 97 180502
[60] Chudzicki C and Strauch F W 2010 Phys. Rev. Lett. 105 260501
[61] Qin W, Wang C, Cao Y and Long G L 2014 Phys. Rev. A 89 062314
[62] Moore C and Russell A 2002 Lecture Notes in Computer Science (Berlin: Springer-Verlag)
[63] Košík J and Bužek V 2005 Phys. Rev. A 71 012306
[64] Krovi H and Brun T A 2006 Phys. Rev. A 73 032341
[65] Marquezino F L, Portugal R, Abal G and Donangelo R 2008 Phys. Rev. A 77 042312
[66] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[67] Hein B and Tanner G 2009 J. Phys. A: Math. Theor. 42 085303
[68] Patel A and Rahaman Md A 2010 Phys. Rev. A 82 032330
[69] Patel A, Raghunathan K S and Rahaman Md A 2010 Phys. Rev. A 82 032331
[70] Beineke L W and Wilson R J (eds.) 1978 Selected Topics in Graph Theory (London: Academic)
[71] Cucchietti F M, Paz J P and Zurek W H 2005 Phys. Rev. A 72 052113
[72] Cai J M, Zhou Z W and Guo G C 2006 Phys. Rev. A 74 022328
[73] Paganelli S, de Pasquale F and Giampaolo S M 2002 Phys. Rev. A 66 052317
[74] Lucamarini M, Paganelli S and Mancini S 2004 Phys. Rev. A 69 062308
[75] Yuan X Z, Goan H S and Zhu K D 2007 New J. Phys. 9 219
[76] Yuan X Z, Goan H S and Zhu K D 2011 New J. Phys. 13 023018
[77] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[78] Majlis N 2000 The Quantum Theory of Magnetism (Singapore: World Scientific)
[79] Schwinger J 1965 Quantum Theory of Angular Momentum (New York: Academic)
[80] Życzkowski K and Sommers H 2001 J. Phys. A: Math. Gen. 34 7111
[81] Li H, Li Y S, Wang S H and Long G L 2014 Commun. Theor. Phys. 61 273
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[3] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[4] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[5] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[6] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[7] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[8] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[9] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[10] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[11] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[12] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[13] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[14] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[15] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
No Suggested Reading articles found!