|
|
Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation |
M. Mirzaee, M. Batavani |
Department of Physics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran |
|
|
Abstract In this paper, we present a structure for obtaining the exact eigenfunctions and eigenvalues of the Jaynes-Cummings model (JCM) without the rotating wave approximation (RWA). We study the evolution of the system in the strong coupling region using the time evolution operator without RWA. The entanglement of the system without RWA is investigated using the Von Neumann entropy as an entanglement measure. It is interesting that in the weak coupling regime, the population of the atomic levels and Von Neumann entropy without RWA model shows a good agreement with the RWA whereas in strong coupling domain, the results of these two models are quite different.
|
Received: 04 December 2013
Revised: 08 March 2014
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.-p
|
(Quantum optics)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Corresponding Authors:
M. Mirzaee
E-mail: m-mirzaee@araku.ac.ir
|
Cite this article:
M. Mirzaee, M. Batavani Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation 2015 Chin. Phys. B 24 040306
|
[1] |
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
|
[2] |
Gerry C and Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press) p. 92
|
[3] |
Ford G W and O'Connell R F 1997 Physica A 243 377
|
[4] |
Zhou Y, Zhang Y J and Xia Y J X 2008 Acta Phys. Sin. 57 21 (in Chinese)
|
[5] |
Liang J Q, Yan Q W and Zhang G F 2003 Acta Phys. Sin. 52 2393 (in Chinese)
|
[6] |
Gao K L, Kuang L M and Zeng H S 2002 Chin. Phys. 11 486
|
[7] |
Mirzaee M and Kamani N 2013 Chin. Phys. B 22 094203
|
[8] |
Ren X Z, Jiang D L, Cong H L and Li L 2010 Chin. Phys. B 19 090309
|
[9] |
Shen J Q, Zhu H Y and Fu J 2002 Chin. Phys. 11 1240
|
[10] |
Lu H X and Wang X Q 2000 Chin. Phys. 9 568
|
[11] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[12] |
Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
|
[13] |
Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature 431 159
|
[14] |
Johansson J, Saito S and Meno T 2006 Phys. Rev. Lett. 96 127006
|
[15] |
Fink J M, Göppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
|
[16] |
Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, Ó Connell A D, Sank D, Wenner J, Cleland A N and Martinis J M 2008 Phys. Rev. Lett. 101 240401
|
[17] |
Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, Ó Connell A D, Sank D, Wenner J, Martinis J M and Cleland A N 2009 Nature 459 546
|
[18] |
Deppe F, Mariantoni M, Menzel E P, Marx A, Saito S, Kakuyanagi K, Tanaka H, Meno T, Semba K, Takayanagi T, Solano E and Gross R 2008 Nat. Phys. 4 686
|
[19] |
Niemczyk T, Deppe F, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
|
[20] |
Forn-Diaz P, Lisenfeld J, Marcos D, Garcia-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
|
[21] |
Fedorov A, Feofanov A K, Macha P, Forn-Daz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503
|
[22] |
Emary C and Bishop R F 2002 J. Math. Phys. 43 3916
|
[23] |
Zueco D, Reuther G M, Kohler S and Hänggi P 2009 Phys. Rev. A 80 033846
|
[24] |
Hwang M J and Choi M S 2010 Phys. Rev. A 82 25802
|
[25] |
Chen Q H, Liu T, Yang Y and Wang K H 2010 Phys. Rev. A 82 052306
|
[26] |
Casanova J, Romero G, Lizuain I, Garca-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
|
[27] |
Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404
|
[28] |
Li Z H, Wang D W, Zheng H, Zhu S Y and Zubairy M S 2009 Phys. Rev. A 80 023801
|
[29] |
Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
|
[30] |
Larson J 2012 Phys. Rev. Lett. 108 033601
|
[31] |
Song J, Xia Y, Sun X D, Zhang Y, Liu B and Song H S 2012 Eur. Phys. J. D 66 90
|
[32] |
Shu H, Wang C, Chen Q H, Ren X Z, Liu T and Wang K L 2012 Phys. Rev. A 86 033837
|
[33] |
Fang M F and Zhou P 1996 Physica A 234 571
|
[34] |
Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
|
[35] |
Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105
|
[36] |
Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|