Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040306    DOI: 10.1088/1674-1056/24/4/040306
GENERAL Prev   Next  

Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation

M. Mirzaee, M. Batavani
Department of Physics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
Abstract  In this paper, we present a structure for obtaining the exact eigenfunctions and eigenvalues of the Jaynes-Cummings model (JCM) without the rotating wave approximation (RWA). We study the evolution of the system in the strong coupling region using the time evolution operator without RWA. The entanglement of the system without RWA is investigated using the Von Neumann entropy as an entanglement measure. It is interesting that in the weak coupling regime, the population of the atomic levels and Von Neumann entropy without RWA model shows a good agreement with the RWA whereas in strong coupling domain, the results of these two models are quite different.
Keywords:  atom-photon interaction      Jaynes-Cummings model      quantum entanglement  
Received:  04 December 2013      Revised:  08 March 2014      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.-p (Quantum optics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Corresponding Authors:  M. Mirzaee     E-mail:  m-mirzaee@araku.ac.ir

Cite this article: 

M. Mirzaee, M. Batavani Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation 2015 Chin. Phys. B 24 040306

[1] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[2] Gerry C and Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press) p. 92
[3] Ford G W and O'Connell R F 1997 Physica A 243 377
[4] Zhou Y, Zhang Y J and Xia Y J X 2008 Acta Phys. Sin. 57 21 (in Chinese)
[5] Liang J Q, Yan Q W and Zhang G F 2003 Acta Phys. Sin. 52 2393 (in Chinese)
[6] Gao K L, Kuang L M and Zeng H S 2002 Chin. Phys. 11 486
[7] Mirzaee M and Kamani N 2013 Chin. Phys. B 22 094203
[8] Ren X Z, Jiang D L, Cong H L and Li L 2010 Chin. Phys. B 19 090309
[9] Shen J Q, Zhu H Y and Fu J 2002 Chin. Phys. 11 1240
[10] Lu H X and Wang X Q 2000 Chin. Phys. 9 568
[11] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[12] Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
[13] Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature 431 159
[14] Johansson J, Saito S and Meno T 2006 Phys. Rev. Lett. 96 127006
[15] Fink J M, Göppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
[16] Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, Ó Connell A D, Sank D, Wenner J, Cleland A N and Martinis J M 2008 Phys. Rev. Lett. 101 240401
[17] Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, Ó Connell A D, Sank D, Wenner J, Martinis J M and Cleland A N 2009 Nature 459 546
[18] Deppe F, Mariantoni M, Menzel E P, Marx A, Saito S, Kakuyanagi K, Tanaka H, Meno T, Semba K, Takayanagi T, Solano E and Gross R 2008 Nat. Phys. 4 686
[19] Niemczyk T, Deppe F, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[20] Forn-Diaz P, Lisenfeld J, Marcos D, Garcia-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[21] Fedorov A, Feofanov A K, Macha P, Forn-Daz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503
[22] Emary C and Bishop R F 2002 J. Math. Phys. 43 3916
[23] Zueco D, Reuther G M, Kohler S and Hänggi P 2009 Phys. Rev. A 80 033846
[24] Hwang M J and Choi M S 2010 Phys. Rev. A 82 25802
[25] Chen Q H, Liu T, Yang Y and Wang K H 2010 Phys. Rev. A 82 052306
[26] Casanova J, Romero G, Lizuain I, Garca-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
[27] Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404
[28] Li Z H, Wang D W, Zheng H, Zhu S Y and Zubairy M S 2009 Phys. Rev. A 80 023801
[29] Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
[30] Larson J 2012 Phys. Rev. Lett. 108 033601
[31] Song J, Xia Y, Sun X D, Zhang Y, Liu B and Song H S 2012 Eur. Phys. J. D 66 90
[32] Shu H, Wang C, Chen Q H, Ren X Z, Liu T and Wang K L 2012 Phys. Rev. A 86 033837
[33] Fang M F and Zhou P 1996 Physica A 234 571
[34] Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
[35] Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105
[36] Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[7] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[8] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[9] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[10] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[11] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[12] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[13] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[14] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!