CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of the thickness of InGaN interlayer on a-plane GaN epilayer |
Wang Jian-Xia (王建霞)a b, Wang Lian-Shan (汪连山)a, Zhang Qian (张谦)b, Meng Xiang-Yue (孟祥岳)b, Yang Shao-Yan (杨少延)a, Zhao Gui-Juan (赵桂娟)a, Li Hui-Jie (李辉杰)a, Wei Hong-Yuan (魏鸿源)a, Wang Zhan-Guo (王占国)a |
a Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b Patent Examination Cooperation Center of the Patent Office, SIPO, Henan, Zhengzhou 450000, China |
|
|
Abstract In this paper, we use the a-plane InGaN interlayer to improve the property of a-plane GaN. Based on the a-InGaN interlayer, a template exhibits that a regular, porous structure, which acts as a compliant effect, can be obtained to release the strain caused by the lattice and thermal mismatch between a-GaN and r-sapphire. We find that the thickness of InGaN has a great influence on the growth of a-GaN. The surface morphology and crystalline quality both are first improved and then deteriorated with increasing the thickness of the InGaN interlayer. When the InGaN thickness exceeds a critical point, the a-GaN epilayer peels off in the process of cooling down to room temperature. This is an attractive way of lifting off a-GaN films from the sapphire substrate.
|
Received: 20 June 2014
Revised: 09 September 2014
Accepted manuscript online:
|
PACS:
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
68.55.A-
|
(Nucleation and growth)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91233111, 61274041, and 11275228), the Special Funds for Major State Basic Research Project of China (Grant No. 2012CB619305), the National High Technology R & D Program of China (Grant Nos. 2014AA032603 and 2014AA032609), and the Guangdong Provincial Special Fund for LED Industrial Development, China (Grant No. 2012A080302003). |
Corresponding Authors:
Wang Jian-Xia, Wang Lian-Shan
E-mail: jxwang2009@semi.ac.cn;ls-wang@semi.ac.cn
|
Cite this article:
Wang Jian-Xia (王建霞), Wang Lian-Shan (汪连山), Zhang Qian (张谦), Meng Xiang-Yue (孟祥岳), Yang Shao-Yan (杨少延), Zhao Gui-Juan (赵桂娟), Li Hui-Jie (李辉杰), Wei Hong-Yuan (魏鸿源), Wang Zhan-Guo (王占国) Effect of the thickness of InGaN interlayer on a-plane GaN epilayer 2015 Chin. Phys. B 24 026802
|
[1] |
Bermardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
|
[2] |
Schmidt M C, Kim K C, Farrell R M, Feezell D F, Cohen D A, Saito M, Fujito K, Speck J S, Denbaars S P and Nakamura S 2007 Jpn. J. Appl. Phys. Part 2, 46 L190
|
[3] |
Sun Q, Yerino C D, Ko T S, Cho Y S, LeeI H, Han J and Coltrin M E 2008 J. Appl. Phys. 104 093523
|
[4] |
Hollander J L, Kappers M J, McAleese C and Humphreys C J 2008 Appl. Phys. Lett. 92 101104
|
[5] |
Zakharov D N, Liliental-weber Z, Wagner B, Reitmeier Z J, Preble E A and Davis R F 2005 Phys. Rev. B 71 235334
|
[6] |
Liu R, Bell A, PonceF A, Chen C Q, Yang J W and Khan M A 2005 Appl. Phys. Lett. 86 021908
|
[7] |
Gühne T, Bougrioua Z, Vennéguès P, Leroux M and Albrecht M 2007 J. Appl. Phys. 101 113101
|
[8] |
Wu Z H, Fischer A M, Ponce F A, Bastek B, Christen J, Wernicke T, Weyers M and Kneissl M 2008 Appl. Phys. Lett. 92 171904
|
[9] |
Xie Z L, Li Y, Liu B, Zhang R, Xiu X Q, Chen P and Zheng Y Z 2011 Chin. Phys. B 20 106801)
|
[10] |
Ni X, Fu Y, Moon Y T, Biyikli N and Morko H 2006 J. Cryst. Growth 290 166
|
[11] |
Ko T S, Wang T C, Gao T C, Chen H G, Huang G S, Lu T C, Kuo H C and Wang S C 2007 J. Cryst. Growth 300 308
|
[12] |
Miyagawa R, Narukawa M, Ma B, Miyake H and Hiramatsu K 2008 J. Cryst. Growth 310 4979
|
[13] |
Sun Q, Yerino C D, Ko T S, Cho Y S, Lee I H, Han J and Coltrin M E 2008 J. Appl. Phys. 104 093523
|
[14] |
Xu X Q, Guo Y, Liu X L, Liu J M and Song H P 2011 Cryst. Eng. Comm. 13 1580
|
[15] |
Li Z W, Wei H Y, Xu X Q, Zhao G J, Liu X L, Yang S Y, Zhu Q S and Wang Z G 2012 J. Cryst. Growth 348 10
|
[16] |
Wang J X, Wang L S, Yang S Y, Li H J, Zhao G J, Zhang H, Wei H Y, Jiao C M, Zhu Q S and Wang Z G 2014 Chin. Phys. B 23 026801
|
[17] |
Chakraborty A, Kim K C, Wu F, Speck J S, DenBaars S P and Mishra U K 2006 Appl. Phys. Lett. 89 041903
|
[18] |
Wang H, Chen C, Gong Z, Zhang J, Gaevski M, Su M, Yang J and Khan M A 2004 Appl. Phys. Lett. 84 499
|
[19] |
Moram M A, Johnston C F, Hollander J L, Kappers M J and Humphreys C J 2009 J. Appl. Phys. 105 113501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|