Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020505    DOI: 10.1088/1674-1056/24/2/020505
RAPID COMMUNICATION Prev   Next  

Onsager principle as a tool for approximation

Masao Doi
Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
Abstract  Onsager principle is the variational principle proposed by Onsager in his celebrated paper on the reciprocal relation. The principle has been shown to be useful in deriving many evolution equations in soft matter physics. Here the principle is shown to be useful in solving such equations approximately. Two examples are discussed: the diffusion dynamics and gel dynamics. Both examples show that the present method is novel and gives new results which capture the essential dynamics in the system.
Keywords:  reciprocal relation      dissipation function      Rayleighian      slow variable      diffusion dynamics      gel dynamics  
Received:  16 December 2014      Revised:  20 December 2014      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  47.15.G-  
  47.63.mf (Low-Reynolds-number motions)  
Corresponding Authors:  Masao Doi     E-mail:  masao.doi.octa.pc@gmail.com

Cite this article: 

Masao Doi Onsager principle as a tool for approximation 2015 Chin. Phys. B 24 020505

[1] Onsager L 1931 Phys. Rev. 37 405
[2] Onsager L 1931 Phys. Rev. 38 2265
[3] Doi M 2012 Non-Equilibrium Soft Matter Physics, ed. Komura S and Ohta T (Singapore: World Scientific) pp. 1–35
[4] Doi M 2013 Soft Matter Physics (Oxford: Oxford University Press)
[5] Onuki A 2002 Phase Transition Dynamics (Cambridge: Cambridge University Press)
[6] Doi M 2009 J. Phys. Soc. Jpn. 78 052001
[7] de Gennes P G and Prost J 1995 The Physics of Liquid Crystals (Oxford: Oxford University Press)
[8] Happel J and Brenner H 1963 Low Reynolds Number Hydrodynamics (Dordrecht: Kluwer Academic Publishers)
[9] Landau L D and Lifshitz E M 1982 Mechanics (Oxford: Butterworth- Heinemann)
[10] Yamaue T and Doi M 2005 J. Chem. Phys. 122 084703
[11] Doi M and Yamaue T 2005 Phys. Rev. E 71 041404
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[4] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[5] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[6] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[7] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[8] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[9] The landscape and flux of a minimum network motif, Wu Xing
Kun Zhang(张坤), Ashley Xia(夏月), and Jin Wang(汪劲). Chin. Phys. B, 2020, 29(12): 120504.
[10] Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions
"Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊), and Jing-Tao Lü(吕京涛). Chin. Phys. B, 2020, 29(12): 120505.
[11] Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble
Xiao-Qiang Su(苏晓强) and You-Quan Zhao(赵有权). Chin. Phys. B, 2020, 29(12): 120506.
[12] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[13] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[14] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
[15] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
No Suggested Reading articles found!