|
|
Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels |
Su Shi-Lei (苏石磊)a, Chen Li (陈丽)b, Guo Qi (郭奇)a, Wang Hong-Fu (王洪福)c, Zhu Ai-Dong (朱爱东)c, Zhang Shou (张寿)a c |
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b Department of Physics, School of Science, Changchun University, Changchun 130022, China; c Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract We design proposals to generate a remote Greenberger-Horne-Zeilinger (GHZ) state and a W state of nitrogen-vacancy (NV) centers coupled to microtoroidal resonators (MTRs) through noisy channels by utilizing time-bin encoding processes and fast-optical-switch-based polarization rotation operations. The polarization and phase noise induced by noisy channels generally affect the time of state generation but not its success probability and fidelity. Besides, the above proposals can be generalized to n-qubit between two or among n remote nodes with success probability unity under ideal conditions. Furthermore, the proposals are robust for regular noise-changeable channels for the n-node case. This method is also useful in other remote quantum information processing tasks through noisy channels.
|
Received: 24 June 2014
Revised: 09 October 2014
Accepted manuscript online:
|
PACS:
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264042, 61465013, 11465020, and 11165015), the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education (Grant No. 201316), and the Talent Program of Yanbian University of China (Grant No. 950010001). |
Corresponding Authors:
Zhang Shou
E-mail: szhang@ybu.edu.cn
|
Cite this article:
Su Shi-Lei (苏石磊), Chen Li (陈丽), Guo Qi (郭奇), Wang Hong-Fu (王洪福), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿) Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels 2015 Chin. Phys. B 24 020305
|
[1] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[2] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[3] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[4] |
Bennett C H and DiVincenzo D P 2000 Nature 404 247
|
[5] |
Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
|
[6] |
Deng F G and Long G L 2004 Phys. Rev. A 70 012311
|
[7] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[8] |
Shi B S and Tomita A 2002 Phys. Lett. A 296 161
|
[9] |
Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
|
[10] |
Durkin G A, Simon C and Bouwmeester D 2002 Phys. Rev. Lett. 88 187902
|
[11] |
Gorbachev V N, Trubilko A I, Rodichkina A A and Zhiliba A I 2003 Phys. Lett. A 314 267
|
[12] |
Gisin N and Massar S 1997 Phys. Rev. Lett. 79 2153
|
[13] |
Zou X B, Pahlke K and Mathis W 2004 Phys. Rev. A 69 052314
|
[14] |
Fidio C D and Vogel W 2003 J. Opt. B: Quantum Semiclass. Opt. 5 105
|
[15] |
Duan L M and Kimble H J 2003 Phys. Rev. Lett. 90 253601
|
[16] |
Yamamoto T, Tamaki K, Koashi M and Imoto N 2002 Phys. Rev. A 66 064301
|
[17] |
Yu C S, Yi X X, Song H S and Mei D 2007 Phys. Rev. A 75 044301
|
[18] |
Zheng A S, Li J H, Yu R, Lü X Y and Wu Y 2012 Opt. Express 20 16902
|
[19] |
Cheng L Y, Wang H F, Zhang S and Yeon K H 2013 Opt. Express 21 5988
|
[20] |
Eibl M, Kiesel N, Bourennane M, Kurtsiefer C and Weinfurter H 2004 Phys. Rev. Lett. 92 077901
|
[21] |
Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
|
[22] |
Häffner H, Hänsel W, Roos C F, Benhelm J, Chekalkar D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W and Blatt R 2005 Nature 438 643
|
[23] |
Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 2000 Science 288 2024
|
[24] |
Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
|
[25] |
Browne D E, Plenio M B and Huelga S F 2003 Phys. Rev. Lett. 91 067901
|
[26] |
Stace T M, Milburn G J and Barnes C H W 2003 Phys. Rev. B 67 085317
|
[27] |
Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
|
[28] |
Deng Z J, Zhang X L, Wei H, Gao K L and Feng M 2007 Phys. Rev. A 76 044305
|
[29] |
Li X H, Deng F G and Zhou H Y 2007 Appl. Phys. Lett. 91 144101
|
[30] |
Yamamoto T, Shimamura J, Ozdemir Ş K, Koashi M and Imoto N 2005 Phys. Rev. Lett. 95 040503
|
[31] |
Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
|
[32] |
Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
|
[33] |
Zheng S B 2008 Chin. Phys. B 17 2969
|
[34] |
Xue P 2011 Chin. Phys. B 20 100310
|
[35] |
Steane A M 1996 Phys. Rev. Lett. 77 793
|
[36] |
Zhao F 2013 Acta Phys. Sin. 62 200303 (in Chinese)
|
[37] |
Xiao F Y and Chen H W 2011 Acta Phys. Sin. 60 080303 (in Chinese)
|
[38] |
Zhang Z R, Liu W T and Li C Z 2011 Chin. Phys. B 20 050309
|
[39] |
Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
|
[40] |
Xue L, Nie M and Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese)
|
[41] |
Song J, Xia Y and Song H S 2008 Phys. Rev. A 78 024302
|
[42] |
Brendel J, Mohler E and Martienssen W 1991 Phys. Rev. Lett. 66 1142
|
[43] |
Brendel J, Gisin N, Tittel W and Zbinden H 1999 Phys. Rev. Lett. 82 2594
|
[44] |
Wang S X, Chan C, Moraw P, Reilly D R, Altepeter J B and Kanter G S 2012 Phys. Rev. A 86 042122
|
[45] |
Takeda S, Mizuta T, Fuwa M, Yoshikawa J I, Yonezawa H and Furusawa A 2013 Phys. Rev. A 87 043803
|
[46] |
Heberle A P, Baumberg J J, Binder E, Kuhn T, Kohler K and Ploog K H 1996 IEEE J. Sel. Top. Quantum Electron. 2 769
|
[47] |
Marie X, Le Jeune P, Amand T, Brousseau M, Barrau J, Paillard M and Planel R 1997 Phys. Rev. Lett. 79 3222
|
[48] |
Bonadeo N H, Erland J, Gammon D, Park D, Katzer D S and Steel D G 1998 Science 282 1473
|
[49] |
Michaelis de Vasconcellos S, Gordon S, Bichler M, Meier T and Zrenner A 2010 Nat. Photon. 4 545
|
[50] |
Riedmatten H D, Afzelius M, Staudt M U, Simon C and Gisin N 2008 Nature 456 773
|
[51] |
Takeda S, Mizuta T, Fuwa M, Loock P V and Furusawa A 2013 Nature 500 315
|
[52] |
Humphreys P C, Metcalf B J, Spring J B, Moore M, Jin X M, Barbieri M, Kolthammer W S and Walmsley I A 2013 Phys. Rev. Lett. 111 150501
|
[53] |
Donohue J M, Agnew M, Lavoie J and Resch K J 2013 Phys. Rev. Lett. 111 153602
|
[54] |
Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
|
[55] |
Wu G T, Zhou N R, Gong L H and Liu S Q 2014 Acta Phys. Sin. 63 060302 (in Chinese)
|
[56] |
Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jacques V, Gaebel T, Jelezko F and Wrachtrup J 2008 Science 320 1326
|
[57] |
Childress L, Gurudev Dutt M V, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R and Lukin M D 2006 Science 314 281
|
[58] |
Xu Z Y, Hu Y M, Yang W L, Feng M and Du J F 2009 Phys. Rev. A 80 022335
|
[59] |
Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062
|
[60] |
Cao C, Liu G, Zhang R and Wang C 2014 Chin. Phys. B 23 040304
|
[61] |
Chen Q, Yang W L, Feng M and Du J F 2011 Phys. Rev. A 83 054305
|
[62] |
Lim Y L, Beige A and Kwek L C 2005 Phys. Rev. Lett. 95 030505
|
[63] |
Yang W L, Yin Z Q, Xu Z Y, Feng M and Du J F 2010 Appl. Phys. Lett. 96 241113
|
[64] |
Park Y S, Cook A K and Wang H L 2006 Nano Lett. 6 2075
|
[65] |
Barbour R J, Dinyari K N and Wang H L 2010 Opt. Express 18 18968
|
[66] |
Barclay P E, Fu K M C, Santori C and Beausoleil R G 2009 Appl. Phys. Lett. 95 191115
|
[67] |
McCutcheon M W and Loncar M 2008 Opt. Express 16 19136
|
[68] |
Young A, Hu C Y, Marseglia L, Harrison J P, O'Brien J L and Rarity J G 2009 New J. Phys. 11 013007
|
[69] |
Buckley B B, Fuchs G D, Bassett L C and Awschalom D D 2010 Science 330 1212
|
[70] |
Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sorensen A S, Hemmer P R, Zibrov A S and Lukin M D 2010 Nature 466 730
|
[71] |
An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
|
[72] |
Hu C Y, Young A, OBrien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307
|
[73] |
Su S L, Guo Q, Zhu L, Wang H F and Zhang S 2012 J. Opt. Soc. Am. B 29 2827
|
[74] |
Pavičić M 2011 Phys. Rev. Lett. 107 080403
|
[75] |
Barclay P E, Santori C, Fu K M, Beausoleil R G and Painter O 2009 Opt. Express 17 8081
|
[76] |
Ren B C and Deng F G 2014 Sci. Rep. 4 4623
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|