Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127502    DOI: 10.1088/1674-1056/24/12/127502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structure, morphology, and magnetic properties of high-performance NiCuZn ferrite

He Xue-Min (何学敏), Yan Shi-Ming (颜士明), Li Zhi-Wen (李志文), Zhang Xing (张星), Song Xue-Yin (宋雪银), Qiao Wen (乔文), Zhong Wei (钟伟), Du You-Wei (都有为)
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Provincial Laboratory for NanoTechnology and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  High-performance submicron-scaled NiCuZn ferrites are prepared by the solid-state reaction method through using CuO as additive. In the synthesis process, a mixture of superfine powder is sintered at 900 ℃ for 3 h, and the obtained product is NiZn-ferrite with spinel structure. We observe that the particle size increases with raising the sintering temperature. The NiCuZn ferrite with relatively uniform size and granular shape has the best performance: its coercivity is 14 Oe (1 Oe=79.5775 A·m-1) and saturation magnetization is 48 emu/g. We also study the effects of particle size, magnetocrystalline anisotropy, and microstructure on coercivity. The method presented here is convenient and economical for producing the high-permeability ferrite powders.
Keywords:  soft-magnetic properties      size effect      magnetocrystalline anisotropy  
Received:  05 April 2015      Revised:  05 August 2015      Accepted manuscript online: 
PACS:  75.20.En (Metals and alloys)  
  75.30.Gw (Magnetic anisotropy)  
  75.50.Gg (Ferrimagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174132, 11474151, and U1232210), the National Key Project for Basic Research, China (Grant Nos. 2011CB922102 and 2012CB932304), the Innovation Program for Doctoral Research of Jiangsu Province, China (Grant No. CXZZ130035), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China.
Corresponding Authors:  Zhong Wei     E-mail:  wzhong@nju.edu.cn

Cite this article: 

He Xue-Min (何学敏), Yan Shi-Ming (颜士明), Li Zhi-Wen (李志文), Zhang Xing (张星), Song Xue-Yin (宋雪银), Qiao Wen (乔文), Zhong Wei (钟伟), Du You-Wei (都有为) Structure, morphology, and magnetic properties of high-performance NiCuZn ferrite 2015 Chin. Phys. B 24 127502

[1] Cullity B D and Graham C D 2009 Introduction to Magnetic Materials, 2nd edn (Piscataway, NJ: IEEE)
[2] Dimri M C, Verma A, Kashyap S C, Dube D C, Thakur O P and Prakash C 2006 Mater. Sci. Eng. B 133 42
[3] Hu J, Yan M and Luo W 2005 Physica B 368 251
[4] Tsay C Y, Liu K S, Lin T F and Lin I N 2000 J. Magn. Magn. Mater. 209 189
[5] Lima U R, Nasar M C, Nasar R S, Rezende M C, Araújo J H and Oliveira J F 2008 Mater. Sci. Eng. B 151 238
[6] Sakellari D, Tsakaloudi V, Polychroniadis E K and Zaspalis V 2008 J. Am. Ceram. Soc. 91 366
[7] Su H, Zhang H W, Tang X L, Zhong Z Y and Jing Y L 2009 Mater. Sci. Eng. B 162 22
[8] Reddy N R, Ramana M V, Rajitha G, Rajagopal E, Sivakumar K V and Murthy V R K 2005 J. Magn. Magn. Mater. 292 159
[9] Aphesteguy J C, Damiani A, DiGiovanni D and Jacobo S E 2009 Physica B 404 2713
[10] Tong S Y, Tung M J, Ko W S, Huang Y T, Wang Y P, Wang L C and Wu J M 2013 J. Alloys Compd. 550 39
[11] Sun K, Lan Z W, Yu Z, Jiang X N and Huang J M 2011 J. Magn. Magn. Mater. 323 927
[12] Roy P K and Bera J 2008 J. Mater. Process. Technol. 197 279
[13] Su H, Zhang H W, Tang X L and Liu Y L 2007 J. Mater. Sci. 42 2849
[14] Sorescu M, Diamandescu L, Peelamedu R, Roy R and Yadoji P 2004 J. Magn. Magn. Mater. 279 195
[15] Barba A, Clausell C, Feliu C and Monzo M 2004 J. Am. Ceram. Soc. 87 571
[16] Makovec D, Drofenik M and Znidarsic A 1999 J. Am. Ceram. Soc. 82 1113
[17] Caltun O F, Spinu L and Stancu A 2001 IEEE Trans. Magn. 37 2353
[18] Morrison S A, Cahill C L, Carpenter E E, Calvin S, Swaminathan R, McHenry M E and Harris V G 2004 J. Appl. Phys. 95 6392
[19] Harris V G, Fatemi D J, Cross J O, Carpenter E E, Browning V M, Kirkland J P, Mohan A and Long G J 2003 J. Appl. Phys. 94 496
[20] Dimri M C, Kashyap S C and Dube D C 2010 Phys. Status Solidi A 207 396
[21] Ghasemi A, Ghasemi E and Paimozd E 2011 J. Magn. Magn. Mater. 323 1541
[22] Su H, Tang X L, Zhang H W, Jing Y L and Zhong Z Y 2011 J. Magn. Magn. Mater. 323 592
[23] Su H, Zhang H W, Tang X L, Liu B Y and Zhong Z Y 2009 J. Alloys Compd. 475 683
[24] Reddy M P, Balakrishnaiah G, Madhuri W, Ramana M V, Reddy N R, Kumar K V S, Murthy V R K and Reddy R R 2010 J. Phys. Chem. Solids 71 1373
[25] Yang Q H, Zhang H W, Liu Y L, Wen Q Y and Jia L J 2012 Mater. Lett. 79 103
[26] Lee Y H, Kuan W C and Tuan W H 2013 J. Eur. Ceram. Soc. 33 95
[27] Jadhav P A, Devan R S, Kolekar Y D and Chougule B K 2009 J. Phys. Chem. Solids 70 396
[28] Byun T Y, Byeon S C, Hong K S and Kim C K 1999 IEEE Trans. Magn. 35 3445
[29] Sugimoto M 1999 J. Am. Ceram. Soc. 82 269
[30] Smit J and Wijn H P J 1955 Ferrites (Eindhoven: Philips Technical Library)
[31] Dimri M C, Kashyap S C, Dube D C and Mohanta S K 2006 J. Electroceram. 16 331
[32] Hsiang H I, Cheng P W and Yen F S 2012 Ceram. Int. 38 4915
[33] Akther Hossain A K M, Seki M, Kawai T and Tabata H 2004 J. Appl. Phys. 96 1273
[34] Dai J F, Jiang Y, Wang Q, Li W X and Dai Y L 2014 Micro Nano Lett. 9 31
[35] Xiang J, Shen X Q, Song F Z and Liu M Q 2010 J. Solid State Chem. 183 1239
[36] Klug H P and Alexander L E 1974 X-Ray Diffraction Procedures, 2nd edn. (New York: Wiley-Interscience)
[37] Cowley J M 1981 Diffraction Physics, 2nd edn. (Amsterdam: North-Holland)
[38] Hsu W C, Chen S C, Kuo P C, Lie C T and Tsai W S 2004 Mater. Sci. Eng. B 111 142
[39] Yan M and Hu J 2006 J. Magn. Magn. Mater. 305 171
[40] Li Y H, Kim W and Kim C S 2011 J. Appl. Phys. 109 07A505
[41] Kojima H 1982 Ferromagnetic Materials, Vol. 3, ed. Wohlfarth E P (Amsterdam: North-Holland)
[42] Morrish A H 2001 The Physical Principles of Magnetism (Piscataway, NJ: IEEE)
[43] Ahmed T T, Rahman I Z and Rahman M A 2004 J. Mater. Process. Technol. 153-154 797
[1] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[2] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[3] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
[4] Influence of additives on the magnetic damping constant of CoIr soft magnetic thin films with negative magnetocrystalline anisotropy
Tianyong Ma(马天勇), Zhi Luo(罗智), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 057505.
[5] Size effect of Si particles on the electrochemical performances of Si/C composite anodes
Bonan Liu(刘柏男), Hao Lu(陆浩), Geng Chu(褚赓), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Shimou Chen(陈仕谋), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088201.
[6] Unified semiclassical approach to electronic transport from diffusive to ballistic regimes
Hao Geng(耿浩), Wei-Yin Deng(邓伟胤), Yue-Jiao Ren(任月皎), Li Sheng(盛利), Ding-Yu Xing(邢定钰). Chin. Phys. B, 2016, 25(9): 097201.
[7] Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm
Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2016, 25(8): 086502.
[8] Finite size effects on the helical edge states on the Lieb lattice
Rui Chen(陈锐), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(6): 067204.
[9] Temperature-dependent specific heat of suspended platinum nanofilms at 80-380 K
Qin-Yi Li(李秦宜), Masahiro Narasaki(楢崎将弘), Koji Takahashi(高桥厚史), Tatsuya Ikuta(生田竜也), Takashi Nishiyama(西山贵史), Xing Zhang(张兴). Chin. Phys. B, 2016, 25(11): 114401.
[10] Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy
De-Lai Wang(王得来), Ming-Qi Cui(崔明启), Dong-Liang Yang(杨栋亮), Jun-Cai Dong(董俊才), Wei Xu(徐伟). Chin. Phys. B, 2016, 25(10): 107501.
[11] Improvements in continuum modeling for biomolecular systems
Yu Qiao(乔瑜) and Ben-Zhuo Lu(卢本卓). Chin. Phys. B, 2016, 25(1): 018705.
[12] Size effects in lithium ion batteries
Hu-Rong Yao(姚胡蓉), Ya-Xia Yin(殷雅侠), Yu-Guo Guo (郭玉国). Chin. Phys. B, 2016, 25(1): 018203.
[13] Finite size effects on the quantum spin Hall state in HgTe quantum wells under two different types of boundary conditions
Cheng Zhi (成志), Chen Rui (陈锐), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(6): 067304.
[14] Fabrication and magnetocrystalline anisotropy of NiCo(002) films
Fan Wei-Jia (樊维佳), Ma Li (马丽), Shi Zhong (时钟), Zhou Shi-Ming (周仕明). Chin. Phys. B, 2015, 24(3): 037507.
[15] Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal
Ke Ya-Jiao (柯亚娇), Zhang Xiang-Qun (张向群), Ge Heng (葛恒), Ma Yue (马跃), Cheng Zhao-Hua (成昭华). Chin. Phys. B, 2015, 24(3): 037501.
No Suggested Reading articles found!