CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy |
De-Lai Wang(王得来), Ming-Qi Cui(崔明启), Dong-Liang Yang(杨栋亮), Jun-Cai Dong(董俊才), Wei Xu(徐伟) |
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In this work, the magnetocrystalline anisotropy energy (MAE) on the surface of Fe33Co67 alloy film is extracted from x-ray magnetic linear dichroism (XMLD) experiments. The result indicates that the surface MAE value is negatively correlated with thickness. Through spectrum calculations and analysis, we find that besides the thickness effect, another principal possible cause may be the shape anisotropy resulting from the presence of interface roughness. These two factors lead to different electron structures on the fermi surface with different exchange fields, which produces different spin-orbit interaction anisotropies.
|
Received: 01 April 2016
Revised: 31 May 2016
Accepted manuscript online:
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.70.Rf
|
(Surface magnetism)
|
|
75.50.Bb
|
(Fe and its alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075176 and 11375131). |
Corresponding Authors:
Ming-Qi Cui
E-mail: cuimq@ihep.ac.cn
|
Cite this article:
De-Lai Wang(王得来), Ming-Qi Cui(崔明启), Dong-Liang Yang(杨栋亮), Jun-Cai Dong(董俊才), Wei Xu(徐伟) Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy 2016 Chin. Phys. B 25 107501
|
[1] |
Ju H L, Li B H, Wu Z F, Zhang F, Liu S and Yu G H 2015 Acta Phys. Sin 64 097501 (in Chinese)
|
[2] |
Zhang H, Li Y Y, Yang M Y, Zhang B, Yang G, Wang S G and Wang K Y 2015 Chin. Phys. B 24 077501
|
[3] |
Bruno P 1989 Phys. Rev. B 39 865
|
[4] |
Weller D, Stohr J, Nakajima R, Carl A, Samant M, Chappert C, Megy R, Beauvillain P, Veillet P and Held G 1995 Phys. Rev. Lett. 75 3752
|
[5] |
van der Laan G 1999 Phys. Rev. Lett. 82 640
|
[6] |
Dhesi S S, van der Laan G, Dudzik E and Shick A B 2001 Phys. Rev. Lett. 87 067201
|
[7] |
Dhesi S S, van der Laan G and Dudzik E 2002 Appl. Phys. Lett. 80 1613
|
[8] |
Soroka I L, Bjorck M, Brucas R, Korzhavyi P and Andersson G 2005 Phys. Rev. B 72 134409
|
[9] |
Moulas G, Lehnert A, Rusponi S, Zabloudil J, Etz C, Ouazi S, Etzkorn M, Bencok P, Gambardella P, Weinberger P and Brune H 2008 Phys. Rev. B 78 214424
|
[10] |
Yildiz F, Luo F, Tieg C, Abrudan R M, Fu X L, Winkelmann A, Przybylski M and Kirschner J 2008 Phys. Rev. Lett. 100 037205
|
[11] |
Andersson G, Burkert T, Warnicke P, Bjorck M, Sanyal B, Chancon C, Zlotea C, Nordstrom L, Nordblad P and Eriksson O 2006 Phys. Rev. Lett. 96 037205
|
[12] |
Burkert T, Nordstrom L, Eriksson O and Heinonen O 2004 Phys. Rev. Lett. 93 027203
|
[13] |
Wang D L, Cui M Q, Yang D L, Xi S B and Liu L J 2013 Chin. Phys. Lett. 30 107501
|
[14] |
van der Laan G and Thole B T 1991 Phys. Rev. B 43 13401
|
[15] |
van der Laan G 1998 Phys. Rev. B 57 112
|
[16] |
Guo G Y, Ebert H, Temmerman W M and Durham P J 1994 Phys. Rev. B 50 3861
|
[17] |
Hall R C 1960 J. Appl. Phys. 31 S157
|
[18] |
De Groot F M F 1994 J. Electron. Spectrosc. Rela. Phenom. 67 529
|
[19] |
De Groot F M F, Fuggle J C, Thole B T and Sawatzky G A 1990 Phys. Rev. B 42 5459
|
[20] |
van der Laan G and Kirkman I W 1992 J. Phys.: Condens. Matter 4 4189
|
[21] |
Moyer J A, Vaz C A F, Arena D A, D. Kumah, Negusse E and Henrich V E 2011 Phys. Rev. B 84 054447
|
[22] |
Stavistiki E and De Groot F M F 2010 Micron. 41 687
|
[23] |
Ikeno H, de Groot F M F, Stavitski E and Tanaka I 2009 J. Phys.: Condens. Matter. 21 104208
|
[24] |
Kuneš J, Oppeneer P M, Valencia S, Abramsohn D, Mertins H C, Gudat W, Hecker M and Schneider C M 2004 J. Magn. Magn. Mater. 272-276 2146
|
[25] |
Oppeneer P M, Mertins H C, Abramsohn D, Gaupp A, Gudat W, Kuneš J and Schneider C M 2003 Phys. Rev. B. 67 052401
|
[26] |
Broddefalk A 2000 “Magnetic Properties of transition metal compounds and superlattices”, Ph. D. Dissertation (Uppsala: Uppsala University)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|