Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107501    DOI: 10.1088/1674-1056/25/10/107501

Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy

De-Lai Wang(王得来), Ming-Qi Cui(崔明启), Dong-Liang Yang(杨栋亮), Jun-Cai Dong(董俊才), Wei Xu(徐伟)
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  In this work, the magnetocrystalline anisotropy energy (MAE) on the surface of Fe33Co67 alloy film is extracted from x-ray magnetic linear dichroism (XMLD) experiments. The result indicates that the surface MAE value is negatively correlated with thickness. Through spectrum calculations and analysis, we find that besides the thickness effect, another principal possible cause may be the shape anisotropy resulting from the presence of interface roughness. These two factors lead to different electron structures on the fermi surface with different exchange fields, which produces different spin-orbit interaction anisotropies.
Keywords:  magnetocrystalline anisotropy energy      x-ray magnetic linear dichroism      L2,3 edge      ligand field multiplet  
Received:  01 April 2016      Revised:  31 May 2016      Accepted manuscript online: 
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.70.Rf (Surface magnetism)  
  75.50.Bb (Fe and its alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075176 and 11375131).
Corresponding Authors:  Ming-Qi Cui     E-mail:

Cite this article: 

De-Lai Wang(王得来), Ming-Qi Cui(崔明启), Dong-Liang Yang(杨栋亮), Jun-Cai Dong(董俊才), Wei Xu(徐伟) Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy 2016 Chin. Phys. B 25 107501

[1] Ju H L, Li B H, Wu Z F, Zhang F, Liu S and Yu G H 2015 Acta Phys. Sin 64 097501 (in Chinese)
[2] Zhang H, Li Y Y, Yang M Y, Zhang B, Yang G, Wang S G and Wang K Y 2015 Chin. Phys. B 24 077501
[3] Bruno P 1989 Phys. Rev. B 39 865
[4] Weller D, Stohr J, Nakajima R, Carl A, Samant M, Chappert C, Megy R, Beauvillain P, Veillet P and Held G 1995 Phys. Rev. Lett. 75 3752
[5] van der Laan G 1999 Phys. Rev. Lett. 82 640
[6] Dhesi S S, van der Laan G, Dudzik E and Shick A B 2001 Phys. Rev. Lett. 87 067201
[7] Dhesi S S, van der Laan G and Dudzik E 2002 Appl. Phys. Lett. 80 1613
[8] Soroka I L, Bjorck M, Brucas R, Korzhavyi P and Andersson G 2005 Phys. Rev. B 72 134409
[9] Moulas G, Lehnert A, Rusponi S, Zabloudil J, Etz C, Ouazi S, Etzkorn M, Bencok P, Gambardella P, Weinberger P and Brune H 2008 Phys. Rev. B 78 214424
[10] Yildiz F, Luo F, Tieg C, Abrudan R M, Fu X L, Winkelmann A, Przybylski M and Kirschner J 2008 Phys. Rev. Lett. 100 037205
[11] Andersson G, Burkert T, Warnicke P, Bjorck M, Sanyal B, Chancon C, Zlotea C, Nordstrom L, Nordblad P and Eriksson O 2006 Phys. Rev. Lett. 96 037205
[12] Burkert T, Nordstrom L, Eriksson O and Heinonen O 2004 Phys. Rev. Lett. 93 027203
[13] Wang D L, Cui M Q, Yang D L, Xi S B and Liu L J 2013 Chin. Phys. Lett. 30 107501
[14] van der Laan G and Thole B T 1991 Phys. Rev. B 43 13401
[15] van der Laan G 1998 Phys. Rev. B 57 112
[16] Guo G Y, Ebert H, Temmerman W M and Durham P J 1994 Phys. Rev. B 50 3861
[17] Hall R C 1960 J. Appl. Phys. 31 S157
[18] De Groot F M F 1994 J. Electron. Spectrosc. Rela. Phenom. 67 529
[19] De Groot F M F, Fuggle J C, Thole B T and Sawatzky G A 1990 Phys. Rev. B 42 5459
[20] van der Laan G and Kirkman I W 1992 J. Phys.: Condens. Matter 4 4189
[21] Moyer J A, Vaz C A F, Arena D A, D. Kumah, Negusse E and Henrich V E 2011 Phys. Rev. B 84 054447
[22] Stavistiki E and De Groot F M F 2010 Micron. 41 687
[23] Ikeno H, de Groot F M F, Stavitski E and Tanaka I 2009 J. Phys.: Condens. Matter. 21 104208
[24] Kuneš J, Oppeneer P M, Valencia S, Abramsohn D, Mertins H C, Gudat W, Hecker M and Schneider C M 2004 J. Magn. Magn. Mater. 272-276 2146
[25] Oppeneer P M, Mertins H C, Abramsohn D, Gaupp A, Gudat W, Kuneš J and Schneider C M 2003 Phys. Rev. B. 67 052401
[26] Broddefalk A 2000 “Magnetic Properties of transition metal compounds and superlattices”, Ph. D. Dissertation (Uppsala: Uppsala University)
[1] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[2] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics
Wei-Jiang Wu(吴维江), Da Xu(徐达), Jie Qian(钱洁), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建强). Chin. Phys. B, 2022, 31(12): 127503.
[5] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[6] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[7] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[11] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[12] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[13] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[14] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[15] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
No Suggested Reading articles found!