Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127302    DOI: 10.1088/1674-1056/24/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spoof surface plasmons resonance effect and tunable electric response of improved metamaterial in the terahertz regime

Wang Yue (王玥)a b, Zhang Li-Ying (张丽颖)b, Mei Jin-Shuo (梅金硕)a, Zhang Wen-Chao (张文超)a, Tong Yi-Jing (童一静)c
a Department of Electrical Science and Technology, Harbin University of Science and Technology, Harbin 150080, China;
b Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China;
c School of Engineering and Applied Science, George Washington University, 2121 Eye Street, NW, Washington, DC 20052, USA
Abstract  We propose an improved design and numerical study of an optimized tunable plasmonics artificial material resonator in the terahertz regime. We demonstrate that tunability can be realized with a transmission intensity as much as ~ 61% in the lower frequency resonance, which is implemented through the effect of photoconductive switching under photoexcitation. In the higher frequency resonance, we show that spoof surface plasmons along the interface of metal/dielectric provide new types of electromagnetic resonances. Our approach opens up possibilities for the interface of metamaterial and plasmonics to be applied to optically tunable THz switching.
Keywords:  surface plasmons      metamaterials      terahertz      resonance  
Received:  16 July 2015      Revised:  14 August 2015      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61201075), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2015039), the Young Scholar Project of Heilongjiang Provincial Education Bureau, China (Grant No. 1254G021), the China Postdoctoral Science Foundation (Grant No. 2012M511507), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201302).
Corresponding Authors:  Wang Yue     E-mail:  wangyue@hrbust.edu.cn

Cite this article: 

Wang Yue (王玥), Zhang Li-Ying (张丽颖), Mei Jin-Shuo (梅金硕), Zhang Wen-Chao (张文超), Tong Yi-Jing (童一静) Spoof surface plasmons resonance effect and tunable electric response of improved metamaterial in the terahertz regime 2015 Chin. Phys. B 24 127302

[1] Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M and Tsakmakidis K L 2012 Nat. Mater. 11 573
[2] Nagpal P, Lindquist N C, Oh S H and Norris D J 2009 Science 325 594
[3] Macdonald K F and Zheludev N I 2010 Laser Photon. Rev. 4 562
[4] Ng B H, Wu J F, Hanham S M, Fernandez-Dominguez A I, Klein N, Liew Y F, Breese M B H, Hong M H and Maier S A 2013 Adv. Opt. Mater. 1 543
[5] Gong S, Zhong R B, Hu M, Chen X X, Zhang P, Zhao T and Liu S G 2015 Chin. Phys. B 24 077302
[6] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[7] Grant J, Shi X, Alton J and Cumming D R S 2011 J. Appl. Phys. 109 054903
[8] Manceau J M, Shen N H, Kafesaki M, Soukoulis C M and Tzortzakis S 2010 Appl. Phys. Lett. 96 021111
[9] Zhao X G, Fan K B, Zhang J D, Seren H R, Metcalfe G D, Wraback M, Averitt R D and Zhang X 2015 Sensors and Actuators A: Physical 231 74
[10] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl1A, Shen Y R and Wang F 2011 Nat. Nanotech. 6 629
[11] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett. 96 107401
[12] N H Shen, Massaouti M, Gokkavas M, Manceau J M, Ozbay E, Kafesaki M, Koschny T, Tzorzakis S and Soukoulis C M 2011 Phys. Rev. Lett. 106 037403
[13] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D and Taylor A J 2009 Nat. Photon. 3 148
[14] Ramakrishnan G, Kumar N, Ramanandan G K P, Adam A J L, Hendrikx R W A and Planken P C M 2014 Appl. Phys. Lett. 104 071104
[15] Yan B, Yang X X, Fang J Y, Huang Y D, Qin H and Qin S Q 2015 Chin. Phys. B 24 015203
[16] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrehenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[17] Barnes W L, Dereux A and Ebbesen T W 2003 Nat. Photon. 424 824
[18] Liu Z W, Wei Q H and Zhang X 2005 Nano Lett. 5 957
[19] Landy N I, Bingham C M, Tyler T, Jokerst N, Smish D R and Padilla W J 2009 Phys. Rev. B 79 125104
[20] Wu M F, Meng F Y, Fu J H, Wu Q and Wu J 2008 Acta Phys. Sin. 57 822 (in Chinese)
[21] Smith D R, Vier D C, Koschny Th and Soukoulis C M 2005 Phys. Rev. E 71 036617
[22] Schurig D, Mock J J and Smith D R 2006 Appl. Phys. Lett. 88 041109
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[5] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[6] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[7] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[8] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[9] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[10] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[11] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[12] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[13] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[14] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[15] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
No Suggested Reading articles found!