Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126302    DOI: 10.1088/1674-1056/24/12/126302
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Material properties dependent on the thermal transport in a cylindrical nanowire

Zhang Yong (张勇)a, Xie Zhong-Xiang (谢忠祥)a, Deng Yuan-Xiang (邓元祥)a, Yu Xia (喻霞)a, Li Ke-Min (李科敏)b
a Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, China;
b Department of Physics and Electronics Information, Hunan Institute of Science and Technology, Yueyang 414004, China
Abstract  Using the elastic wave continuum model, we investigate the effect of material properties on ballistic thermal transport in a cylindrical nanowire. A comparative analysis for the convexity-shaped and concavity-shaped structure is made. It is found that in the convexity-shaped structure, the material with higher wave velocity in the convexity region can increase the thermal conductance at the lower temperature range; the thermal conductance of the nanowire with higher wave velocity in the convexity region is lower than that of the nanowire with lower wave velocity in the convexity region at the higher temperature range. However, in the concavity-shaped structure, the material properties of the concavity region have less effect on the thermal conductance at the lower temperature range; the material with higher wave velocity in the concavity region can reduce the thermal conductance at the higher temperature range. A brief analysis of these results is given.
Keywords:  acoustic phonon transport      nanostructure      transmission coefficient      thermal conductance  
Received:  23 April 2015      Revised:  04 August 2015      Accepted manuscript online: 
PACS:  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  73.23.Ad (Ballistic transport)  
  44.10.+i (Heat conduction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404110), the Natural Science Foundation of Hunan Province, China (Grant Nos. 14JJ3139, 2015JJ6027, and 2015JJ6030), the Outstanding Young Program from the Education Department of Hunan Province, China (Grant No. 14B046), and the Doctoral Activation Foundation of Hunan Institute of Technology of China (Grant No. HQ14006).
Corresponding Authors:  Xie Zhong-Xiang, Yu Xia     E-mail:  xiezxhu@163.com;yuxia83@126.com

Cite this article: 

Zhang Yong (张勇), Xie Zhong-Xiang (谢忠祥), Deng Yuan-Xiang (邓元祥), Yu Xia (喻霞), Li Ke-Min (李科敏) Material properties dependent on the thermal transport in a cylindrical nanowire 2015 Chin. Phys. B 24 126302

[1] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[2] Li N, Ren J, Wang L, Zhang G and Li B 2012 Rev. Mod. Phys. 84 1045
[3] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E and Shi L 2014 Appl. Phys. Rev. 1 011305
[4] Ming Y and Ding X 2014 Chin. Phys. Lett. 31 080501
[5] Dubi Y and Ventra M D 2011 Rev. Mod. Phys. 83 131
[6] Zhang G and Li B 2010 Nanoscale 2 1058
[7] Feng Y, Zhu J and Tang D W 2014 Chin. Phys. B 23 083101
[8] Ramin Y, Mohsen C, Farid J S, Mahomoudian M R, Abdolhossein S and Nay M H 2014 Chin. Phys. B 23 108101
[9] Rego L C C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
[10] Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 Nature 404 974
[11] Duchemin I and Donadio D 2012 Appl. Phys. Lett. 100 223107
[12] Zhang Y, Xie Z X, Yu X, Wang H B and Li K M 2014 J. Appl. Phys. 116 144304
[13] Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309
[14] Lin K H and Strachan A 2013 Phys. Rev. B 87 115302
[15] Zhang G and Zhang Y 2013 Phys. Status Solidi 7 754
[16] Liu Y Y, Zhou W X, Tang L M and Chen K Q 2014 Appl. Phys. Lett. 105 203111
[17] Nie L Y, Li C X, Zhou X P, Wang C Z and Cheng F 2012 Chin. Phys. B 21 026301
[18] Zhu H, Xu Y, Gu B and Duan W 2012 New. J. Phys. 14 013053
[19] Gong W, Zhang W, Ren C, Wang S, Wang C, Zhu Z and Huai P 2013 RSC Advances 31 12855
[20] Mingo N, Stewart D A and Broido D 2008 Phys. Rev. B 77 033418
[21] Yamamoto T, Sasaoka K and Watanabe S 2011 Phys. Rev. Lett. 106 215503
[22] Xie G, Shen Y, Wei X, Yang L, Xiao H, Zhong J and Zhang G 2014 Sci. Rep. 4 5085
[23] Lan J, Cai Y, Zhang G, Wang J S and Zhang Y W 2014 J. Phys. D: Appl. Phys. 47 265303
[24] Ouyang T, Chen Y P, Xie Y, Stocks G M and Zhong J X 2011 Appl. Phys. Lett. 99 233101
[25] Xie Z X, Chen K Q and Duan W H 2011 J. Phys.: Condens. Matter 23 315302
[26] Chen K Q, Li W X, Duan W H, Shuai Z and Gu B L 2005 Phys. Rev. B 72 045422
[27] Hao F, Fang D and Xu P 2011 Appl. Phys. Lett. 99 041901
[28] Shao Z G, Ai B Q and Zhong W R 2014 Appl. Phys. Lett. 104 013106
[29] Huang H, Xu Y, Zou X, Wu J and Duan W 2013 Phys. Rev. B 87 205415
[30] Jiang J W, Wang B S and Wang J S 2011 Appl. Phys. Lett. 98 113114
[31] Pei Q X, Zhang Y W, Sha Z D and Shenoy V B 2013 J. Appl. Phys. 114 033526
[32] Liu B, Reddy C D, Jiang J, Zhu H, Baimova J A, Dmitriev S V and Zhou K 2014 J. Phys. D: Appl. Phys. 47 165301
[33] Huang W Q, Zou M L, Huang G F, Yao J J and Hu W Y 2009 J. Appl. Phys. 105 124305
[34] Madelung O 1982 Semiconductors: Group IV Elements and III-V Compounds (Berlin: Springer Press)
[35] Li W X, Chen K Q, Duan W H, Wu J and Gu B L 2003 J. Phys. D: Appl. Phys. 36 3027
[36] Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W and Zou B S 2005 J. Appl. Phys. 98 093524
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[5] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[6] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[7] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[8] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[9] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[10] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[11] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[12] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[13] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[14] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[15] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
No Suggested Reading articles found!